京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在现代信息技术时代,数据科学自学有大量的免费资源。事实上,您甚至可以从无数可用资源中设计自己的数据科学课程。虽然从课程工作中获得的知识对于打好数据科学的基础是必不可少的,但你需要记住数据科学是一个实践性很强的领域。因此,动手技能非常重要,尤其是如果你有兴趣在学术界以外的地方作为一名实践数据科学家工作的话。
本文将讨论4个重要的平台,这些平台将使您能够构建一个展示数据科学经验的投资组合。一个强大的投资组合会让你的雇主在竞争中占据优势,吸引最优秀的人才。请记住,有兴趣雇用你的雇主会要求你提供完成数据科学项目的证据。埃隆·马斯克(Elon Musk)的这句名言概括了包括数据科学在内的任何技术学科的雇主的心态:
“一般情况下,寻找能证明特殊能力的东西。我甚至不在乎某人是否毕业于大学或高中或其他什么…他们是否制造了一些真正令人印象深刻的设备?赢得一些真正艰苦的比赛?想出什么好主意了吗?解决一些非常棘手的问题?“
一个突出完成的项目、认可和奖项列表的强有力的投资组合将作为你在数据科学方面能力的证据。
在深入研究构建良好的数据科学组合的主题之前,让我们首先讨论数据科学组合重要的5个原因。
现在让我们讨论创建数据科学组合的4个重要平台。
1。GitHub
GitHub是一个非常有用的展示数据科学项目的平台。作为一个数据科学的渴望者,GitHub应该作为您在整个数据科学旅程中作为已完成项目的存储库使用的第一个平台。这些项目可以包括每周任务中的项目或顶点项目。这个平台使您能够与其他数据科学家或数据科学的渴望者共享您的代码。对雇用你感兴趣的雇主会检查你的GitHub投资组合,评估你已经完成的一些项目。因此,在GitHub上构建一个非常强大和专业的投资组合非常重要。
要建立一个GitHub投资组合,首先要做的是创建一个GitHub帐户。一旦您的帐户创建,您可以继续编辑您的个人资料。当编辑你的个人资料时,添加一个简短的传记和一张专业的个人资料图片是个好主意。您可以在这里找到一个GitHub概要文件的示例:https://GitHub.com/bot13956。
现在让我们假设您已经完成了一个重要的数据科学项目,并且希望为您的项目创建一个GitHub存储库。
创建存储库的提示:确保为存储库选择合适的标题。然后包括一个自述文件,以提供项目内容的概要。然后您可以上传您的项目文件,包括数据集、Jupyter笔记本和示例输出。
下面是一个用于机器学习项目的GitHub存储库的示例:
存储库名称:bot13956/ml_model_for_predicting_ships_crew_size
存储库URL:https://github.com/bot13956/ml_model_for_predicting_ships_crew_size
自述文件:
ML_Model_for_Predicting_Ships_Crew_Size Author: Benjamin O. Tayo Date: 4/8/2019 We build a simple model using the cruise_ship_info.csv data set for predicting a ship's crew size. This project is organized as follows: (a) data preprocessing and variable selection; (b) basic regression model; (c) hyper-parameters tuning; and (d) techniques for dimensionality reduction. cruise_ship_info.csv: dataset used for model building. Ship_Crew_Size_ML_Model.ipynb: the Jupyter notebook containing code.
您可以从示例自述文件中看到,该文件很好地概述了项目的全部内容,包括目标和目的、数据集以及包含代码的Jupyter笔记本文件。在准备存储库时,请始终记住,由于它是公共的,其他用户将可以访问它,因此您希望以易于理解的方式准备它。
2。Kaggle
Kaggle是世界上最大的数据科学社区,拥有强大的工具和资源来帮助您实现数据科学目标。Kaggle允许用户查找和发布数据集,在基于Web的数据科学环境中探索和构建模型,与其他数据科学家和机器学习工程师合作,并参加解决数据科学挑战的竞赛。在此平台上,您可以访问数据集、课程、笔记本和比赛。同样,作为一个初学者,你必须创建一个帐户,然后设置你的个人资料,包括一张个人资料图片和一个简短的个人简历。
加入Kaggle的主要目的之一是与其他数据科学专业人员建立网络。无论您是数据科学新手还是经验丰富的数据科学家,您都可以在Kaggle上找到一个合适的论坛,允许您发现内容并围绕您感兴趣的主题进行讨论。你的最终目标应该是进入并参与在这个平台上发起的数据科学竞赛。因为大多数比赛鼓励团队合作,所以与其他数据科学领域的有志之士建立网络是很重要的,他们可以作为Kaggle challenge比赛的团队成员。当您参加Kaggle竞赛时,您可以在您的公共配置文件上展示您完成的项目,包括您的数据集、Jupyter笔记本和项目报告。
3。LinkedIn
LinkedIn是一个非常强大的平台,可以展示您的技能,并与其他数据科学专业人士和组织建立联系。LinkedIn现在是发布数据科学职位和招聘数据科学家的最著名平台之一。事实上,我通过LinkedIn得到了许多数据科学方面的采访。
确保您的个人资料始终是最新的。列出你的数据科学技能集,以及你的经验,包括你完成的项目。也列出奖项和荣誉是值得的。你还想让招聘人员知道你正在积极寻找工作。此外,在LinkedIn上,您希望通过关注数据科学影响者和出版物,如KDnuggets、走向数据科学和走向人工智能,来保持最新的信息。这些公司发布关于各种主题的有趣的数据科学文章的更新,包括机器学习、深度学习和人工智能。
下面是我在LinkedIn上发帖的例子:https://www.LinkedIn.com/in/benjamin-o-tayo-ph-d-a2717511/detail/recent-activity/shares/
4。中等
Medium现在被认为是投资组合建设和网络建设发展最快的平台之一。如果您有兴趣使用这个平台来建立投资组合,第一步将是创建一个中等帐户。您可以创建免费帐户或会员帐户。对于一个免费的帐户,您每月可以访问的会员文章的数量是有限制的。一个会员帐户需要每月5美元或50美元/年的订阅费。有关成为Medium会员的更多信息,请访问以下站点:https://Medium.com/membership。
一旦您创建了一个帐户,您就可以继续创建一个配置文件。确保包括一张专业图片和一个简短的个人简历。下面是一个中等配置文件的示例:https://Medium.com/@benjaminobi。
在Medium上,与其他数据科学专业人员建立网络的一个好方法是成为追随者。您还可以关注专门针对数据科学的特定媒体出版物。两个顶级数据科学出版物是《面向数据科学》和《面向人工智能》。
在媒体上增强你的投资组合的最好方法之一是成为一名媒体作家。
写媒介文章有5个主要优点:
如果您有兴趣成为一名数据科学媒体作家,这里有一些可以让您入门的资源:
在媒体上写数据科学博客初学者指南
为您的数据科学文章选择正确的特征图像
总之,我们讨论了可以用于构建数据科学组合的4个重要平台。投资组合是展示您的技能和与其他数据科学专业人员建立网络的一种非常重要的方式。一个好的投资组合不仅能帮助你跟上这个领域的最新发展,还能提高你在潜在招聘者面前的知名度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26