京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着数据在业务中扮演着越来越重要的角色,数据专业人员的需求仍然很高。尽管数据科学劳动力短缺,但这个领域可能是一个竞争激烈的领域。如果员工想增加他们获得理想职位的机会,他们可以在简历上增加一些变化。
简历上的多样性体现了灵活性,这是当今数据专业人员的一项基本技能。它可能是一个很好的简历助推器,但从一个职位跳到另一个职位来改善简历是不实际的。谢天谢地,申请人可以增加多样性,而不需要承担许多新的工作。
以下是数据专业人员在简历中添加变化的七种方法。
职位头衔不是简历上唯一能展示多样性的东西。如果申请人名下有任何出版物,如书籍、期刊文章或白皮书,他们应该列出这些出版物。这些对潜在的雇主来说是一个例子,表明一个工人对他们的领域是认真的。
记住,每件事都应该与手头的具体工作相关。数据相关职位的简历中只应显示与数据相关的出版物。如果工人没有任何相关的出版作品,他们可以寻找机会成为其中的一部分。
在整个职业生涯中,数据专业人员将从事各种项目,无论是工作还是业余爱好。无论它们是令人印象深刻的个人追求还是为公司节省资金的事件,这些项目都是相关技能的例子。提到具体的项目而不是一般的工作描述也会给重复的简历增加变化。
任何展示不同方法或技能,或特别令人印象深刻的东西都值得一提。对这些项目的描述不需要很长,应该集中在使它们独特的地方。最好用数字和指标来表达这些成就,这些数字和指标比语言更突出。
申请者的当前公司可能有项目,可以为简历添加变化。当数据专业人员工作时,他们应该寻找任何学习或使用新技能的机会。自愿成为这些任务的一部分将有助于建立一份更令人印象深刻的简历。
数据专业人士可以向他们的经理询问任何这样的机会,或者密切关注这些机会。无论是在一个特殊的公司项目上工作,还是为部门开创一个新的流程,这些出现的频率比一些人想象的要高。
数据专业人员不必将自己局限于当前职位上可用的工作。数据科学家和分析师是急需的员工,所以他们可以从事自由职业来提升简历。自由职业项目使专业人员能够承担他们原本无法完成的任务,在没有另一份全职工作的情况下增加了变化。
由于这种类型的工作使专业人士能够选择他们自己的时间,它可以适应他们目前的时间表。工人不需要承担太多额外的工作。仅仅几个项目就可以增加一些所需的多样性。
如果专业人士想找到另一个能增加多样性的全职职位,他们可以考虑在国际上工作。与美国公司相比,国际公司更有可能有不同的项目。即使他们没有,与不同的文化合作也显示了灵活性。
国际上有几种工作方式,所以工人们无论现状如何都能找到一些东西。数据专业人员甚至可以为国际公司找到合同工作,这样他们就可以在其他工作的基础上完成这项工作。
即使通过各种职位,数据专业人员可能会发现他们的日常工作看起来相似。这些员工仍然可以找到机会,通过提及他们积累的软技能,在简历中增加变化。即使以数据为中心的工作从一个职位到另一个职位看起来都一样,不同的工作环境可能会发展出各种软技能。
处理数字并不是数据专业人员工作中唯一重要的技能。他们还需要将结果传达给不同的受众,在团队中工作,并具有适应性。突出这些软技能而不是看起来更相似的任务会增加简历的多样性。
招聘经理通常只有30秒的时间来查看求职者的简历。数据专业人员需要在不占用太多空间的情况下展示多样性。对所有描述符的具体说明也迫使申请者专注于使每个条目唯一的东西。
对不同的数据位置进行一般的、缩小的查看可能会使它们看起来都一样。对每一个都进行具体说明会突出它们的不同之处。
与数据相关的工作有很多种,即使它可能不会立即显现出来。希望改进简历的数据专业人员可以按照以下步骤来展示这种变化。然后,他们可以成为一个更有吸引力的候选人,在一个已经很有需求的领域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21