京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家泰勒·理查兹@脸书
大约每个月,我都会收到一封电子邮件,问我如何进入数据科学,我已经回答得够多了,所以我决定把它写在这里,这样我就可以把人们链接到它。所以如果你是这些学生中的一员,欢迎!
我将把它分成基本的建议,如果你只在谷歌上搜索“如何进入数据科学”,就可以很容易地找到这些建议,以及不太常见的建议,但我多年来发现这些建议非常有用。我将从后者开始,然后转向基本建议。显然,对此要半信半疑,因为所有的建议都带有一点生存偏见。
1。查找坚实的社区
如果你在大学里,在那里的一半意义是找到像你这样聪明、有抱负、有动力的人来学习和成长。对我的母校来说,这个社区是数据科学和信息学俱乐部。社区/网络帮助你开始,让你保持动力,并且是获得实习和长期全职工作的关键。
2。将数据科学应用于您喜欢的事物
擅长任何事情都很难(杜),将数据科学应用到你关心的领域或领域可以帮助你保持动力并脱颖而出。我举了几个例子:Usinguf(母校)的学生政府选举,学习机器学习方法,或者通过记录我们的乒乓球比赛来跟踪我朋友的Elo成绩。这些项目教会了我基本的技能,但没有明显的工作感觉。
获得代表你将来想要执行的工作的有用的实践是至关重要的,因为通过这种实践,你只能得到两件事中的一件:
a.意识到你实际上并不喜欢这种类型的数据科学,在这种情况下,你应该立即停止阅读
B.你可以很容易地写(博客)或谈论(给想付钱给你的人)的宝贵经验
这就引出了我的下一个观点。
3。尽量减少“能力证明点击”
招聘人员会花15秒在你的简历上,潜在团队会花1-5分钟(最多)在你的简历+网站/GitHub上(访问者tomy投资组合网站平均会花2分16秒再继续)。这两个群体都经常使用GPA、学校质量或科技公司数据的经验等能力指标(我称之为身份证明)。因此,你应该仔细考虑向读者发出信号所需的时间,告诉他们你可以做他们想招聘的任何工作。要考虑的一个粗略指标是点击证明能力。
如果招聘人员不得不点击Github中正确的存储库,然后点击文件,直到他们发现Jupyter笔记本中有不可读的代码(但没有注释),你就已经输了。如果招聘人员在你的简历上看到机器学习,但你需要点击5次才能看到任何ML产品或代码,你就已经输了。任何人都可以在简历上撒谎;用一个观点来迅速引导读者的注意力,你就会处于一个明显更好的位置。
在我的网站上,我想优化这个指标的方式非常清楚。浏览文本大约需要10秒钟(我敢打赌大多数人不会一直读下去),然后人们可以立即选择一个数据科学项目来查看,这些项目根据它们展示我所能做的工作的程度进行排序。对于在DS中开始,我强烈建议制作一个网站(即使是一个引导模板网站也很好),并将其托管在Github页面或heroku上。
4。通过研究或入门级工作学习
在你做了这三件事之后,看看你是否能说服某人付钱给你学习数据科学。我喜欢UF有一个很棒的选举数据科学小组(麦克唐纳博士和史密斯博士目前负责),但如果你去任何一个研究小组采访他们,他们可能会为你的工作付钱。最终,有了这样的经验,你就可以申请实习并获得丰厚的报酬。这里的关键是不要一开始就寻找那些令人难以置信的花哨的DS实习机会,而是在当地有数据科学任务但没有足够的钱雇佣一名全职数据科学家的公司或研究小组。数据科学学习快速复合,所以现在就开始吧!考虑到所有这些,让我们继续讨论更基本的建议。
数据科学主要是应用于任何领域的编程和统计,所以这两个领域的背景是至关重要的。
1。统计信息
尽快获得一个良好的统计背景(参加课程,在线学习)。教科书会带你走得更远,好奇心会带你走得更远。
书籍/资源:
2。编程
学习Python或R,并真正擅长它。每天做一些新的事情,每周至少花5-10个小时在上面。在此之后学习SQL。你不能跳过这个。
书籍/资源:
3。业务经验
在宝洁,我的数据科学工作被应用于零售业。在脸书,诚信问题。保护民主,呃,民主。学习数据科学在某些业务环境中的应用是很困难的,需要实践,并且通常涉及到对度量、产品分析和激励结构的扎实理解。这非常符合第二个不太基本的建议。
学习数据科学很难,但我发现它非常有价值。我给你的最后一个提议,作为阅读这篇长篇文章的交换,是说一旦你把数据科学应用到你感兴趣的问题上,并把它发布到网上的某个地方,在推特上把它写给我,我保证会阅读并转发它。祝你好运!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26