
几年前,数据科学作为一种需求旺盛、利润丰厚的职业道路出现,出于几个原因,它仍然如此。首先,公司比以前收集了更多数量和更多类型的信息,代表们希望从中获得洞察力。
另一个原因是,人们意识到,即使在充满挑战的市场中,有效使用数据也能提高竞争力。这里有六个行业现在正在招聘数据科学家,在可预见的未来可能会继续这样做。
一项对顶级大数据行业的研究显示,电信和信息技术位居榜首。此外,预测预计该行业的价值将在2023年达到1052亿美元,高于2019年的590亿美元。一个例子是,南非品牌Telkom为女性创造了在该公司担任数据科学专家的机会。
电信公司的商业领袖可以利用数据科学家的专业知识来决定何时何地推出5G技术。他们还可以开始分析客户服务电话的趋势,以检测和排除常见问题。
交通部门依赖数据科学专业知识的机会也已经成熟。英国政府官员最近宣布打算释放位置数据的潜力。人们相信,这些信息可以支持电动汽车充电基础设施,减少排放影响,并使旅行更加安全和愉快,等等。
另一个趋势是使用乘客的手机数据来衡量人们依赖公共交通服务的频率。洛杉矶当局已经采取了这种方法。数据科学家可以帮助决策者从收集的信息中收集有价值的细节。
健康保险行业的人也对雇佣数据科学家更感兴趣。这样做有助于他们掌握新的趋势,比如对自我保险计划越来越感兴趣。例如,统计数据显示,29.2%的中型雇主选择了自我保险。数据科学家可以评估这种变化,以及跟踪其他值得注意的模式。
健康保险公司的领导人希望了解哪些因素使投保人更有可能提出索赔,或者该国哪些地区的客户最多。数据科学可以回答这些问题和其他问题。
银行业的领导者也意识到雇佣数据科学家是值得的。在一个例子中,美国银行分析了超过4.1万条社交媒体评论,发现了数千条关于限购的虚假谣言。然后,代表们可以做出澄清,以防止声誉受损。
银行还分析数据,以识别可疑交易或支出模式。他们在决定是否向客户提供贷款时也是这样做的。一些银行客户也受益于数据分析,比如如果应用程序功能告诉他们,他们在给定的一个月里可能会比平时花费更多。
零售品牌在高管意识到更清楚地了解可用信息有助于满足客户需求后,雇佣数据科学家。例如,一项假日购物研究显示,在两年的时间里,人们搜索“礼品盒”这个词的频率是其他时间的1.85倍。这些结果帮助零售商调整他们提供的产品。
从与新冠肺炎相关的困难中恢复的努力也可能推动零售领域的数据科学家招聘活动。这场流行病改变了人们购物的方式和他们更喜欢购买的东西。数据专家将在发现这些新趋势、向零售高管提供采取行动和增加利润所需的统计数据方面发挥至关重要的作用。
数据科学家也将在生命科学和制药部门找到工作。伊莱恩·奥德怀尔作为生命科学数据科学家与埃森哲合作。“项目通常侧重于在整个生命科学行业应用高级分析,通常与数据和分析策略设计相结合。我们位于爱尔兰的团队所做的大部分工作都与商业药物产品的制造和供应有关,例如,优化调度以提高质量控制实验室的生产率和效率,“她说。
由于新冠肺炎仍然是全球大部分地区的严重威胁,这些行业的领导人可能会意识到,数据对于应对全球流行病带来的额外压力至关重要。数据还将帮助这些公司开发新药,减少错误,最大限度地减少召回,无论是新冠肺炎治疗还是其他治疗。
这些只是数据科学家今年及以后可以找到工作的众多行业中的一部分。今天的高管们希望摆脱以前主要依靠直觉和经验做决定的做法。数据科学家有知识和技能来揭示可能被忽视的洞察力,使它们对几乎任何行业都有价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11