
最好的技术人员解决错误的问题注定会失败和沮丧。然而,我们经常看到伟大的Python开发人员和SQL专家创造出出色的技术,但对业务几乎没有什么价值。在某些情况下,情况要糟糕得多。这些解决方案的价值并不值得商榷,而是耗尽了资源,混淆了业务流程。作为数据工程师,我们有责任充分理解我们的解决方案所支持的业务流程。
作为高级数据工程师,我们应该非常了解业务,我们建议如何提高效率和增强工作。一个大胆的声明,但我会舒舒服服地死在这把剑上,和任何不同意的人战斗。当然,打个比喻,因为我没有剑,与其说是斗士,不如说是个情人。关键是,我们需要了解业务,有一个重要的工具可以帮助我们实现这一目标。
在我们开始之前,读一下朱利安·科维齐克的这句精彩的话,它简洁地指出了问题:
“如今,通过理解底层数据和与之相伴随的业务流程来塑造数据似乎不如移动数据的能力重要。”
他在这里说的是,我们太忙于将数据从那里转移到这里,以及我们可以使用的所有酷的工具,我们忘记了我们首先做这一切的原因。数据工程师从多个来源收集原始数据,并创建可供人和机器有效使用的可消耗软件包。对我们的消费者来说,介于两者之间的一切都是一个黑匣子。为什么我们把大部分时间和精力都花在黑匣子上,而不是消耗性的包装上?
愤世嫉俗的观点会说,这是因为黑匣子是有趣的部分。虽然这可能是等式中的一个因素,但我相信我们中的许多人只是不太了解业务流程,无法有效地将时间花在改进可消费软件包上。让我说清楚。更好地理解业务是你的工作和责任。不容易啊。在一个完美的世界里,我们会有很好的文档可以依赖,但是…嗯…你知道的。这就是我们数据工程工具箱中最重要的工具。
问题。就在那儿。问题。很多。好的。坏的。尴尬的那些。所有的问题!这对你来说足够强调了吗?你想从好到好吗?问问题并充分理解您支持的业务流程。我怎么强调都不为过,与一个只关心技术的数据工程师交谈是多么令人沮丧,而我是一名数据工程师。想象一下,你是一名财务分析师、人力资源主管或销售人员。他们需要可消耗的数据包,但可能不理解技术术语。除了他们使用的特定工具之外,他们可能对技术知之甚少。
因此,仅仅提出问题是不够好的。相反,我们需要用企业理解的语言提出正确的问题。忘掉表、数据源和主键吧。这些事情来得更晚,往往是由对更多人的更多问题决定的。相反,询问人们在日常工作中做了什么。询问业务目标是什么。工作如何通过各种系统流动。问,直到你完全理解公司使用的业务流程。然后记录下来。
编写业务文档。当然,做这件事是他们的工作,但你才是需要它的人。创建流程图,包括业务使用的任何工具。包括人们与流程交互的地方。然后和业务一起审查,问更多的问题。您可能会发现没有一个人能理解所有的事情,所以您将与几个人交谈并最终统一业务流程。您编写的文档将成为业务中有价值的工件。砰!你对公司来说是无价之宝。我敢说,你刚成为一名高级数据工程师?
作为数据工程师,理解我们的解决方案支持的业务流程是我们的责任。如果不充分了解这些过程,我们注定会受挫和失败。我们生活的这个不完美的世界通常没有很好的记录,而我们数据工程师是需要弄清楚这一切的人。通过提出大量的问题,我们可以更好地理解我们的解决方案支持的业务流程,这使我们能够不断改进我们工作的影响。所以,开始吧。质疑一切!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10