京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当我第一次从金融学过渡到数据科学时,我觉得自己就像站在了世界之巅--我在我梦想的领域找到了一份工作,我的职业轨迹已经确定,我只会低着头努力工作,哪里会出错?嗯,有几件事……在接下来的一年里,作为一名数据科学家,我很高兴我发现自己在职业生涯早期犯了几个错误。这样,我就有时间在为时已晚之前进行反思和纠正。过了一会儿,我意识到这些错误是相当普遍的。事实上,我已经观察到我周围的很多DS仍然在犯这些错误,而没有意识到从长远来看,这些错误可能会损害他们的数据生涯。
如果我的5条麦肯锡教给我的让你成为更好的数据科学家的经验教训是我从最好的方面学到的,那么本文中的经验教训是我辛苦学到的,我希望我能帮助你避免犯同样的错误。
在成长过程中,人们总是根据我们如何遵守规则和秩序来评价我们,尤其是在学校里。如果你遵循课本,练习考试,只要投入艰苦的学习,你就会成为优等生。许多人似乎把这种“步兵”的心态带到了他们的工作环境中。在我看来,正是这种心态阻碍了许多数据科学家最大限度地发挥他们的影响,并从同行中脱颖而出。我观察到很多DS,尤其是低年级的DS,认为他们对决策过程没有什么贡献,宁愿退居二线,被动地执行为他们做出的决策。这引发了一个恶性循环--你对这些讨论的贡献越少,利益相关者就越不可能让你参与未来的会议,你在未来做出贡献的机会也就越少。
让我给你一个具体的例子,在模型开发的情况下,一个步兵和一个思想伙伴之间的区别。在数据收集和功能集思广益会议中,以前的我总是被动地记录涉众的建议,这样我就可以在以后“完美”地实现它们。当有人提出一个特性,我知道我们没有数据,我不会说任何基于假设,他们更资深,他们一定知道一些我忽略了。但你猜怎么着,他们没有。我后来会面临这样的情况,即我们集思广益的50%的特性将需要额外的数据收集,这将危及我们的项目截止日期。结果,我经常发现自己最终处于坏消息传递者的不受欢迎的位置。如今,我努力成为一个思想伙伴,我在谈话的早期就参与进来,并利用我作为最接近数据的人的独特地位。通过这种方式,我可以在早期管理涉众的期望,并提出建议来帮助团队前进。
如何避免这种情况:
我想成为一名数据工程师还是数据科学家?我想处理市场和销售数据还是地理空间分析?您可能已经注意到,到目前为止,我在本文中一直使用术语DS作为许多与数据相关的职业道路(例如,数据工程师、数据科学家、数据分析师等)的通用术语。这是因为在当今的数据世界中,这些标题之间的界限是如此模糊,尤其是在较小的公司中。我观察到许多数据科学家认为自己只是构建模型的数据科学家,而不关注任何业务方面,或者数据工程师只关注数据管道,而不想知道公司正在进行的任何建模。
最好的数据人才是那些能够身兼数职或至少能够理解其他数据角色的流程的人。如果您想在早期阶段或成长阶段的初创企业工作,这尤其方便,因为那里的功能可能还没有那么专业化,而且您需要灵活并涵盖各种与数据相关的职责。即使你在一个明确定义的工作概要中,随着时间的推移,你获得了更多的经验,你可能会发现你有兴趣过渡到一个不同类型的数据角色。如果你不把自己和你的技能归类于一个特定角色的狭隘焦点,这个支点会容易得多。
如何避免这种情况:
自满扼杀生命
每个士兵都知道这一点,每个DS也应该知道。对自己的数据技能沾沾自喜,而不花时间学习新的技能是一个常见的错误。在数据领域这样做比在其他一些领域更危险,因为数据科学是一个相对较新的领域,仍在经历剧烈的变化和发展。不断有新的算法、新的工具,甚至新的编程语言被引入。
如果你不想成为那个在2021年仍然只知道如何使用STATA的数据科学家(他存在,我和他一起工作过),那么你需要跟上该领域的发展。
如何避免这种情况:
如果你只有一把锤子,一切看起来都像钉子。不要成为那个什么都想用ML的DS。当我第一次进入数据科学的世界时,我对我在学校学到的所有花哨的模型感到非常兴奋,迫不及待地想在现实世界的问题上尝试所有这些模型。但现实世界与学术研究不同,80/20规则总是在发挥作用。
在我之前的一篇关于“麦肯锡教给我的5堂课”的文章中,我写到了商业影响和可解释性有时比你的模型的准确性多出几个百分点更重要。有时,假设驱动的Excel模型可能比多层神经网络更有意义。在这种情况下,不要过度弯曲你的分析肌肉,使你的方法矫枉过正。相反,发挥你的商业实力,做一个同样具有商业头脑的DS。
如何避免这种情况:
在我的文章 "建立伟大的数据文化的6个基本步骤 "中,我写到如果公司没有伟大的数据文化,数据科学家的生活可能是可怕的和无益的。事实上,我已经听到很多DS抱怨那些没有生产力的临时数据请求,这些请求应该很容易被利益相关者以自给自足的方式处理(例如,在Looker中把一个汇总从每月改为每天,这简直包括两次点击)。不要认为改变这种文化是别人的工作。如果你想看到改变,就去做吧。毕竟,谁比数据科学家自己更有能力建立数据文化和教育利益相关者了解数据?帮助建立公司的数据文化将使你和你的利益相关者的生活更容易。
如何避免这种情况:
我确实想指出,在你的职业生涯中犯错是可以的。最重要的是从这些错误中吸取教训,并在将来避免它们。或者更好的是,把它们写下来帮助别人避免犯同样的错误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24