
如果你是一个书呆子般的数据科学家,想要开始作为一个独立(远程)自由数据科学家工作,这篇文章是为你准备的。从现在朝九晚五的工作过渡到远程自由职业是一种解放的经历。最终收益是巨大的,包括:
我叫保·拉巴塔·巴约。我是一个自由数据科学家和ML工程师谁作为一个远程自由职业者在过去2年以上的工作。之前,我曾在一家顶级移动游戏公司Nordeus担任数据科学家。在我周围,我有一群伟大的数据科学家和了不起的数据工程师。当我加入这个团队的时候,他们已经在内部建立了数据分析平台,帮助公司管理一个每天活跃用户超过200万的游戏。我觉得我是另一只在一个成熟的蜂群中运作的蜜蜂。我90%的时间都花在技术上,包括数据分析以改进产品和ML开发以提高效率。10%的时间用于与团队其他成员交流我正在做的事情。
对于像我们这样的书呆子、数据科学家和ML怪人来说,这种分裂感觉很棒。然而,这种舒适有一个代价,我在两个不断的想法中想到了
最终,我辞去了工作,开始从事远程自由数据科学家的工作。这一转变既具有挑战性,也令人难以置信地丰富。在此过程中,我收集了一些知识,并将其浓缩为4个实用技巧,以帮助您加入我的行列,并开始走在另一边。
你的第一个问题是:我在哪里找到我的第一个项目?
互联网上有大量与数据相关的工作。如果你访问像Upwork这样的网站,你可以看到每分钟都有新的职位发布。是的,有很多数据科学工作,这是你每天早上都应该感谢的事情。然而,在那些巨大的网站上也有很多竞争。来自世界各地的自由职业者试图和你在同一个池塘里钓鱼。
你可能会想:
“考虑到我的技能和生活成本,让我们设定一个比我认为合理的低的工资,以增加我找到第一份工作的机会。”
大错。顺便说一句,我犯了两次这个错误。在我的第二个自由职业项目中,我和同一时区的另一位数据工程师一起工作,他的工资是我的两倍多。他第一次做自由职业。无数次我后悔我的聪明的定价。
大多数客户愿意支付更高的费率以减少项目的不确定性。你是一个非常合格的工作,过度的价格折扣也被解释为项目成功的更高的不确定性。此外,请记住,你试图说服另一个人,而不是成本最小化的Android。你需要表现出自信,设定一个比你认为自己价值更低的价格与此相反。
如今,有很多自由职业平台。我已经使用了其中的3个(Upwork,Toptal和Braintrust),但也可以随意探索其他的。
这些平台可分为两类:
大多数客户不是寻找一个全面的数据科学家,而是寻找一个可以解决他们问题的特定配置文件。一个非常了解如何
试图把自己表现为无所不能的终极自由数据科学家是很有诱惑力的,但这不是客户想要的。此外,数据科学是一个巨大的市场。通过缩小你的侧写,你仍然在一个相当大的池塘里钓鱼。记住这一点。
我的第一份自由职业可以粗略地描述为“我们的数据工程师没有一个能在Tableau中构建一个漂亮的仪表板。你能吗?“。这不是我能想到的最令人兴奋的工作,但这是我在以前的工作中做过一千次的事情。我是这方面的专家,这是对客户有价值的。
从专注于你已经是专家的项目开始你的道路。避免冒名顶替综合症,赢得你的第一张支票,建立信心。
兼职工作,甚至每小时工作,你可以学到和以前朝九晚五一样的东西。利用这个机会,在额外的时间里学习新的技能,为下一份合同中你想要工作的下一个领域做准备。
一个典型的错误是这样开始一个提案:
“亲爱的X。我叫Y,是一名数据科学家,在a、B、C和D领域有N年的经验。我有E方面的背景,而且……”
当然可以。你的潜在客户想知道你不可思议的背景。但她不是你爸妈。他想解决这个问题,所以直奔主题。从第一段开始专注于问题,没有序言和只能让她打哈欠的陈述。使用项目符号来列举与问题直接相关的非常具体的事情,并减少认知负荷。还有,把BS控制在最小。你喜欢读别人如何赞美自己吗?你的潜在客户也一样。
自从我开始做自由职业以来,我一直保留着我写的每一份提案。所有为我赢得工作的提案都有这样的结构:
“嗨X!我的名字是Y,最近我构建了N个与您的问题Z直接相关的东西:
我很乐意帮你做这件事。让我们本周打个电话来了解细节。最佳,Y.“
作为一名数据科学家的自由远程工作在智力和经济上都是令人难以置信的回报。如果这些建议能在你的自由职业道路上帮助你,我会感到非常高兴。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08