因为有大量的竞争来获得数据科学家的工作。
找一份数据科学工作比以往任何时候都更难--如何将它转化为你的优势-kdnuggets
尽管许多有抱负的数据科学家发现,找到一份工作变得比以前更加困难…
因为有一种疯狂的冲动。每一种工程师、科学家和工作人员都称自己为数据科学家。
为什么有这么多“冒牌”数据科学家?
你有没有注意到有多少人突然自称为数据科学家?你的邻居,你在一个…
遇到的女孩
因为你不确定你能不能在这里面切牙。请记住,冒名顶替综合症在数据科学中非常活跃。
如何管理数据科学中的冒名顶替综合症
如果他们发现你一无所知怎么办?
我可以继续,但你明白…
那么,你如何将自己与群众区分开来呢?我不知道你是否可以,但我可以告诉你几个指针来测试你自己。这就是这篇文章的内容。
问自己几个问题,数数是的答案的数量。你越做这些,就越脱离群众。
If you are not a beginner but consider yourself to be at a somewhat mature stage as a data scientist, do you do these?
不要把你所有的时间和精力都花在分析更大的数据集或实验最新的深度学习模型上。
留出至少25%的时间来学习做一两件在任何地方、任何组织、任何情况下都很有价值的事情,
正如您所看到的,这些习惯相当容易养成和实践,即它们不需要繁重的工作、多年的统计学背景或深度机器学习知识方面的高级专业知识。
但是,令人惊讶的是,并不是每个人都接受它们。而且,那是你脱颖而出的机会。
想象一下你在面试中的样子。如果你对上面的问题有很多肯定的答案,你可以向你的面试官提到,
想象一下,你在面试委员会面前的声音会与其他应聘者有多大的不同,这些应聘者在常规的统计和梯度下降问题上表现出色,但没有提供全面能力的证明。
它们表明您对数据科学问题好奇。
它们表明你阅读,你分析,你交流。您创建和文档供其他人创建。
它们表明,您的思考超越了笔记本和分类准确性,而达到了业务增值和客户同理心的领域。哪家公司不会喜欢这样的应聘者?
… these habits are fairly easy to develop and practice i.e. they do not need backbreaking work, years-long background in statistics, or advanced expertise in deep machine learning knowledge. 但是,令人惊讶的是,并不是每个人都接受它们。而且,那是你脱颖而出的机会。
有这么多伟大的工具和资源来帮助你练习。在一篇小文章的篇幅里,甚至不可能列出其中的一小部分。我只是展示一些有代表性的例子。关键的想法是沿着这些思路探索,并为自己发现帮助艾滋病。
只使用Jupyter笔记本构建可安装的软件包
nbdev:使用Jupyter笔记本实现所有功能
如何制作出色的Python包-一步一步
2021年如何制作一个超赞的Python包
了解如何在自己的ML模型和模块开发中集成单元测试原则
Pytest for Machine Learning-一个简单的基于示例的教程
了解如何在数据科学任务中集成面向对象编程原则
面向数据科学家的面向对象编程:构建您的ML估计器
使用简单的Python脚本构建交互式web应用程序-不需要HTML/CSS知识
PyWeBio:使用Python以脚本方式编写交互式Web应用程序
直接从Jupyter笔记本上写出完整的编程和技术书籍。也可将此用于文档构建。
带有Jupyter的书籍
理解实际分析问题的多方面复杂性,以及它不仅仅是建模和预测
为什么业务分析问题需要您的所有数据科学技能
想象一下,你在面试委员会面前的声音会与其他应聘者有多大的不同,这些应聘者在常规的统计和梯度下降问题上表现出色,但没有提供全面能力的证明。
学习时不要跳台阶。跟着步骤走。
不要只专注于阅读最新的深度学习技巧或关于最新Python库的博客文章。在每一个机会,阅读该行业的顶级论坛和好书的董事会主题。我喜欢的一些书籍和论坛如下,
随着越来越多的企业采用和接受这些变革性技术,数据科学以及机器学习和人工智能的相关技能目前在就业市场上的需求非常高。人才的需求和供给双方之间存在着大量的竞争和沟通不畅。
一个亟待解决的问题是:如何从一百个共同申请者中区分自己?
我们列出了一些关键问题,你可以问自己,并评估你在一些技能和习惯上的独特性,这些技能和习惯使你与众不同。我们展示了一些想象中的对话片段,你可以在面试板上展示这些技能和习惯。我们还提供了一份资源的入围名单,以帮助您开始这些。
我们列出了几种参加MOOCs的方法,并建议阅读参考资料。
祝你在你的数据科学之旅中一切顺利…
您可以查看作者的GitHub存储库以获取机器学习和数据科学方面的代码、思想和资源。如果你和我一样,对人工智能/机器学习/数据科学充满热情,请在LinkedIn上添加我或在Twitter上关注我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23