
因为有大量的竞争来获得数据科学家的工作。
找一份数据科学工作比以往任何时候都更难--如何将它转化为你的优势-kdnuggets
尽管许多有抱负的数据科学家发现,找到一份工作变得比以前更加困难…
因为有一种疯狂的冲动。每一种工程师、科学家和工作人员都称自己为数据科学家。
为什么有这么多“冒牌”数据科学家?
你有没有注意到有多少人突然自称为数据科学家?你的邻居,你在一个…
遇到的女孩
因为你不确定你能不能在这里面切牙。请记住,冒名顶替综合症在数据科学中非常活跃。
如何管理数据科学中的冒名顶替综合症
如果他们发现你一无所知怎么办?
我可以继续,但你明白…
那么,你如何将自己与群众区分开来呢?我不知道你是否可以,但我可以告诉你几个指针来测试你自己。这就是这篇文章的内容。
问自己几个问题,数数是的答案的数量。你越做这些,就越脱离群众。
If you are not a beginner but consider yourself to be at a somewhat mature stage as a data scientist, do you do these?
不要把你所有的时间和精力都花在分析更大的数据集或实验最新的深度学习模型上。
留出至少25%的时间来学习做一两件在任何地方、任何组织、任何情况下都很有价值的事情,
正如您所看到的,这些习惯相当容易养成和实践,即它们不需要繁重的工作、多年的统计学背景或深度机器学习知识方面的高级专业知识。
但是,令人惊讶的是,并不是每个人都接受它们。而且,那是你脱颖而出的机会。
想象一下你在面试中的样子。如果你对上面的问题有很多肯定的答案,你可以向你的面试官提到,
想象一下,你在面试委员会面前的声音会与其他应聘者有多大的不同,这些应聘者在常规的统计和梯度下降问题上表现出色,但没有提供全面能力的证明。
它们表明您对数据科学问题好奇。
它们表明你阅读,你分析,你交流。您创建和文档供其他人创建。
它们表明,您的思考超越了笔记本和分类准确性,而达到了业务增值和客户同理心的领域。哪家公司不会喜欢这样的应聘者?
… these habits are fairly easy to develop and practice i.e. they do not need backbreaking work, years-long background in statistics, or advanced expertise in deep machine learning knowledge. 但是,令人惊讶的是,并不是每个人都接受它们。而且,那是你脱颖而出的机会。
有这么多伟大的工具和资源来帮助你练习。在一篇小文章的篇幅里,甚至不可能列出其中的一小部分。我只是展示一些有代表性的例子。关键的想法是沿着这些思路探索,并为自己发现帮助艾滋病。
只使用Jupyter笔记本构建可安装的软件包
nbdev:使用Jupyter笔记本实现所有功能
如何制作出色的Python包-一步一步
2021年如何制作一个超赞的Python包
了解如何在自己的ML模型和模块开发中集成单元测试原则
Pytest for Machine Learning-一个简单的基于示例的教程
了解如何在数据科学任务中集成面向对象编程原则
面向数据科学家的面向对象编程:构建您的ML估计器
使用简单的Python脚本构建交互式web应用程序-不需要HTML/CSS知识
PyWeBio:使用Python以脚本方式编写交互式Web应用程序
直接从Jupyter笔记本上写出完整的编程和技术书籍。也可将此用于文档构建。
带有Jupyter的书籍
理解实际分析问题的多方面复杂性,以及它不仅仅是建模和预测
为什么业务分析问题需要您的所有数据科学技能
想象一下,你在面试委员会面前的声音会与其他应聘者有多大的不同,这些应聘者在常规的统计和梯度下降问题上表现出色,但没有提供全面能力的证明。
学习时不要跳台阶。跟着步骤走。
不要只专注于阅读最新的深度学习技巧或关于最新Python库的博客文章。在每一个机会,阅读该行业的顶级论坛和好书的董事会主题。我喜欢的一些书籍和论坛如下,
随着越来越多的企业采用和接受这些变革性技术,数据科学以及机器学习和人工智能的相关技能目前在就业市场上的需求非常高。人才的需求和供给双方之间存在着大量的竞争和沟通不畅。
一个亟待解决的问题是:如何从一百个共同申请者中区分自己?
我们列出了一些关键问题,你可以问自己,并评估你在一些技能和习惯上的独特性,这些技能和习惯使你与众不同。我们展示了一些想象中的对话片段,你可以在面试板上展示这些技能和习惯。我们还提供了一份资源的入围名单,以帮助您开始这些。
我们列出了几种参加MOOCs的方法,并建议阅读参考资料。
祝你在你的数据科学之旅中一切顺利…
您可以查看作者的GitHub存储库以获取机器学习和数据科学方面的代码、思想和资源。如果你和我一样,对人工智能/机器学习/数据科学充满热情,请在LinkedIn上添加我或在Twitter上关注我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14