京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网络安全顾问斯特凡·马拉杰。
作为数据科学家,我们有时会有点过于…科学地看待事物。虽然数据科学家的核心技能与以往基本相同--统计学、数学和逻辑学--但总有新的技能出现。有时,这些与计算机编程的新范式或新的统计技术有关。
在今天的商业环境中,对于数据科学家来说,这些新兴技能中最重要的是软技能。尽管老派程序员告诉你什么,但事实是,今天没有人,包括数据科学家,可以忽视这些技能。它们不仅使团队合作更加有效,而且还能促进你的职业生涯。
在本文中,我们将带您了解数据科学家的五种最重要的软技能,并向您展示如何开发它们。
首先,如果你仍然对发展这些技能的必要性持怀疑态度,让我们来看看数据。谷歌最近的一项研究对几家大公司的员工进行了调查,试图评估最有生产力、最有创新精神的员工所拥有的技能。
结果可能会令人惊讶。创新不是由拥有最高技术水平的员工推动的,而是那些参与跨学科小组的最具生产力和创造性的工作人员。在这些群体中,那些拥有高度发展的软技能的人能够推动变革,更有可能升到管理职位。
当然,你所需要的技能类型取决于你的工作方式和工作重点。尽管如此,有一些技能对几乎每一个数据科学角色都是至关重要的。它们在这里:
作为一名数据科学家,你很可能已经为自己有能力向普通观众传达复杂的想法和数据分析而自豪。然而,有一个理由可以在你的角色的技术要求之外分享你的技能和专业知识。积极主动地接触你的客户和经理,不仅可以改善这些关系,甚至可以促进你的职业生涯。
能够对一屋子的科学家整理、分析和反刍大量与主题相关的数据是一回事,但能够将其本质传达给那些可能帮助你实现向上发展的职业抱负的人是另一回事。
假设有一天你在午餐室碰见了公司的CEO。她开心地在手机上冲浪,谷歌这个,那个,还有其他一切。由于IT部门每天都在向你灌输网络安全的想法,你不经意间提到使用世界上最受欢迎的搜索引擎是一个糟糕的想法,除非你喜欢跟踪和存储你的每一次在线活动。谈话接踵而至。首席执行官对你的精明和帮助的意愿印象深刻。下一次,当她参加董事会会议时,高管团队正在审查该提升哪名员工,该将哪名员工调往西伯利亚时,你的名字在她的记忆中浮现为一个乐于助人的家伙。
你得到了很大的加薪和一个带窗户的角落办公室。这一切都是因为您能够超越硬数据科学技能的限制,并以人类的身份进行联系。
有效、清晰、及时的决策是一项至关重要的业务技能。然而,它经常被数据科学家忽视。这可能会给公司带来重大问题,因为数据科学家可能会发现自己处于高级职位(参见上面的午餐故事),而没有必要的技能和知识来做出管理或商业决策。
然而,这并不是一项很难获得的技能。定期回顾当前和即将到来的行业趋势对于提高你的管理水平是非常有价值的,并且(再次)表明你渴望更多的责任。
批判性思维比这份清单上的其他一些软技能更难定义--事实上,这就是为什么一些文科专业的学生花了几年时间在大学里磨练这种技能。作为科学家,我们工作的方法似乎很少给批判性和创造性留下空间。这与事实正好相反。
最终,批判性思维允许你做两件事。一个是有效地过滤我们现在被轰炸的信息海啸。在前八大平台上有超过90亿的社交媒体用户,谁能跟上呢?没错。没人。
快速扫描和过滤信息的能力可能是你职业生涯中与众不同的因素。与批判性思维相关的另一个关键软技能是能够在动态中重新构建和修改数据分析,以便识别和解决手头的真正问题。
尽管数据分析似乎是一项孤独的任务,但现实是团队工作对组织来说一直很重要。这在一定程度上是由于我上面提到的研究,它强调了多学科团队在推动创新方面的价值。
如果你不是一个善于与人相处的人,也不具备与可能不分享你的专业知识或世界观的同事一起工作所必需的软技能,那么在这些环境中工作可能会带来压力。与同事建立专业关系的能力至关重要。
最后但绝对不是最不重要的是研究技能。数据科学的世界和那些在其中工作的人的角色正在快速变化。正因为如此,一个最重要的技能培养是进一步你自己的教育。
技术专业继续教育的重要性正逐渐被雇主所认识。如果你能及时了解这个领域的新技术、新问题和新工具,你就会期待更多更好的工作机会。
我们刚才讨论的软技能不仅是高效和胜任工作的必要条件,而且也受到雇主的高度追捧。成功的软技能发展可能是在未来工作场所获得成功的关键。伴随着更多的协作工作而来的是新的挑战。确定哪些技能是你需要加强的,现在就开始制定一个改进计划。
生物:斯特凡·马拉杰几乎是一名会计师,但现在对网络安全的了解超过了收入确认原则。20年后,他是一名网络安全顾问,为黑客的大脑提供洞察力,以找出他们到底在实施什么样的计算机渎职行为以及如何阻止它。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19