
在数据科学领域工作了几年,我试图了解学习和教授数据科学的最佳方法。
我希望我们的团队在通过MOOCs进行教学方面做得很好。
“50多万学生不会错的,”正如广告所说。
虽然在线课程是最实惠的学习方式,但在线辅导也不应该被低估。
在需求方面,对于任何人来说,这是一个更昂贵但极其有效的方法来推进他们的数据科学职业生涯。
在供应方面,许多专业人士在他们的数据科学团队中是令人惊叹的导师,但没有考虑将家教作为额外收入的来源。
在本文中,我们将把这个问题作为一个“在线数据科学辅导”的商业案例来探讨。
抖音很热,但很容易。我花了一个小时才“得到它”
数据科学很热,但很难。我花了几年时间才“得到它”,然而,我仍然觉得不舒服说,“我得到了数据科学。”
这主要是因为数据科学确实是一个没完没了的话题。
没有人能说:“我知道关于数据科学的一切。”
它有许多不同的方面:
你明白重点了。
要成为一名优秀的数据科学家,必须具备这些技能的综合。再加上更多。
你们中的一些人可以自学,另一些人--不是真的。
在整个过程中会出现许多问题,如果有人在那里回答这些问题,这将是一个巨大的帮助。
你可能就是那个人!当然是一定的价格。
你有资格吗?如果你了解KDnuggets上一半的博客,你肯定有资格通过帮助有抱负的数据科学家来获得额外的收入。
辅导有抱负的人的不同方法包括:
这是一个双赢的局面,你可以把你对数据科学的热情转化为额外的收入,并可能在此过程中学到一些新的东西。
谁会对你的服务感兴趣?
有抱负的数据科学家目前在大学,参加在线课程,或与书本学习。他们总是需要一只额外的手。
但是,不仅仅是他们。
每一个愿意学习新东西的数据科学家,即每一个明智的数据科学家,都可以真正从您提供的东西中受益。
也不要低估经验丰富的数据科学家。
如果他们是“数学难”的类型,他们肯定需要一些数据科学沟通技能。
如果他们是“创造性”的数据可视化类型,他们可能需要“销售人员”类型的帮助,将他们的工作从非常漂亮到非常有说服力。
请放心,在这个过程中你也会学到很多东西。
你需要三件事:
设置基础结构以主办会议并获得报酬
你如何确保视频通话发生并获得报酬?
为什么?因为人们必须能在网上找到你。更重要的是,您需要记录了解您的人数的数据。不管是一个简单的预订页面还是一个辅导市场,你必须存在于互联网上。如果你正在寻找一些更私人但更容易的东西,那么Wix和Squarespace将是一个很好的匹配。
当你开始的时候,你可以自己安排会议。但那不是自动化的。作为一名数据科学家,您可能更喜欢自动化或至少半自动化调度。您可以使用Calendly或HubSpot。
这是旧闻:缩放,谷歌见面,微软团队拯救世界!
PayPal、Stripe和Revolut都是很好的候选人。
集成这四个工具,甚至至少视频和支付,将是您的技术基础设施。
如果你太忙或不想麻烦,你可以选择端到端付费在线会议的解决方案之一。我鼓励你尝试一下3Veta.com。
学习在线教学的基本知识
确保你没有跳过这一步。这听起来可能很平凡,但事实并非如此。
首先,你必须学会如何准备一个会议和领导一个会议。所有类型的在线咨询规则都是一样的。这些步骤很容易遵循--所有与建立、准备设备、收集材料等相关的步骤。让自己熟悉这个阶段,我强烈建议有一个清单。
其次,了解这个人面临的问题。
你在那里不是为了教他们“所有的数据科学”,你在那里是因为他们有一个特定的数据科学问题,你有专业知识来解决。
问很多问题。转移您的数据科学技能,并深入挖掘,直到您达到问题的根本原因。个人只不过是一个极其庞大的数据集合。
例如,他们告诉你,“我需要帮助来创建图表。”所以对话可以是这样的:
你用的是什么软件?你在编码,啊哈。
用什么编程语言?蟒蛇!不错的选择。
您首选的IDE是什么?嗯,Jupyter对初学者很好,但你可以考虑在未来转向其他东西。
您发现有有用的库吗?MatPlotLib是一个非常坚固的,但你试过Seaborn吗?我想这可能更适合你的案子。一个有趣的也是阴谋。但是如果你想在MatPlotLib上做得更好,我听到了,我会帮助你的。
那么您到底想要创建什么呢?你在创作它或设计它时挣扎吗?造型很重要。但是如果外表是你追求的,MatPlotLib不适合你。也许Python也不是正确的选择。在Tableau或Powerbi中试试这个怎么样?我可以给你看。
你是专家。指导他们成为一个更好的数据科学家,并分享你的错误或偏见。
联系目标客户
你需要对你的目标客户有所帮助。知道他们存在的地方或上网。
您真的能做到这一点吗?
开始在网上赚取额外收入从来没有这么容易过,我已经提倡这一点很长一段时间了。
听起来可能很难,但你知道吗?你是数据科学专家,不是抖音!
你的事业通常更难,但总是更有回报!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14