
在数据科学领域工作了几年,我试图了解学习和教授数据科学的最佳方法。
我希望我们的团队在通过MOOCs进行教学方面做得很好。
“50多万学生不会错的,”正如广告所说。
虽然在线课程是最实惠的学习方式,但在线辅导也不应该被低估。
在需求方面,对于任何人来说,这是一个更昂贵但极其有效的方法来推进他们的数据科学职业生涯。
在供应方面,许多专业人士在他们的数据科学团队中是令人惊叹的导师,但没有考虑将家教作为额外收入的来源。
在本文中,我们将把这个问题作为一个“在线数据科学辅导”的商业案例来探讨。
抖音很热,但很容易。我花了一个小时才“得到它”
数据科学很热,但很难。我花了几年时间才“得到它”,然而,我仍然觉得不舒服说,“我得到了数据科学。”
这主要是因为数据科学确实是一个没完没了的话题。
没有人能说:“我知道关于数据科学的一切。”
它有许多不同的方面:
你明白重点了。
要成为一名优秀的数据科学家,必须具备这些技能的综合。再加上更多。
你们中的一些人可以自学,另一些人--不是真的。
在整个过程中会出现许多问题,如果有人在那里回答这些问题,这将是一个巨大的帮助。
你可能就是那个人!当然是一定的价格。
你有资格吗?如果你了解KDnuggets上一半的博客,你肯定有资格通过帮助有抱负的数据科学家来获得额外的收入。
辅导有抱负的人的不同方法包括:
这是一个双赢的局面,你可以把你对数据科学的热情转化为额外的收入,并可能在此过程中学到一些新的东西。
谁会对你的服务感兴趣?
有抱负的数据科学家目前在大学,参加在线课程,或与书本学习。他们总是需要一只额外的手。
但是,不仅仅是他们。
每一个愿意学习新东西的数据科学家,即每一个明智的数据科学家,都可以真正从您提供的东西中受益。
也不要低估经验丰富的数据科学家。
如果他们是“数学难”的类型,他们肯定需要一些数据科学沟通技能。
如果他们是“创造性”的数据可视化类型,他们可能需要“销售人员”类型的帮助,将他们的工作从非常漂亮到非常有说服力。
请放心,在这个过程中你也会学到很多东西。
你需要三件事:
设置基础结构以主办会议并获得报酬
你如何确保视频通话发生并获得报酬?
为什么?因为人们必须能在网上找到你。更重要的是,您需要记录了解您的人数的数据。不管是一个简单的预订页面还是一个辅导市场,你必须存在于互联网上。如果你正在寻找一些更私人但更容易的东西,那么Wix和Squarespace将是一个很好的匹配。
当你开始的时候,你可以自己安排会议。但那不是自动化的。作为一名数据科学家,您可能更喜欢自动化或至少半自动化调度。您可以使用Calendly或HubSpot。
这是旧闻:缩放,谷歌见面,微软团队拯救世界!
PayPal、Stripe和Revolut都是很好的候选人。
集成这四个工具,甚至至少视频和支付,将是您的技术基础设施。
如果你太忙或不想麻烦,你可以选择端到端付费在线会议的解决方案之一。我鼓励你尝试一下3Veta.com。
学习在线教学的基本知识
确保你没有跳过这一步。这听起来可能很平凡,但事实并非如此。
首先,你必须学会如何准备一个会议和领导一个会议。所有类型的在线咨询规则都是一样的。这些步骤很容易遵循--所有与建立、准备设备、收集材料等相关的步骤。让自己熟悉这个阶段,我强烈建议有一个清单。
其次,了解这个人面临的问题。
你在那里不是为了教他们“所有的数据科学”,你在那里是因为他们有一个特定的数据科学问题,你有专业知识来解决。
问很多问题。转移您的数据科学技能,并深入挖掘,直到您达到问题的根本原因。个人只不过是一个极其庞大的数据集合。
例如,他们告诉你,“我需要帮助来创建图表。”所以对话可以是这样的:
你用的是什么软件?你在编码,啊哈。
用什么编程语言?蟒蛇!不错的选择。
您首选的IDE是什么?嗯,Jupyter对初学者很好,但你可以考虑在未来转向其他东西。
您发现有有用的库吗?MatPlotLib是一个非常坚固的,但你试过Seaborn吗?我想这可能更适合你的案子。一个有趣的也是阴谋。但是如果你想在MatPlotLib上做得更好,我听到了,我会帮助你的。
那么您到底想要创建什么呢?你在创作它或设计它时挣扎吗?造型很重要。但是如果外表是你追求的,MatPlotLib不适合你。也许Python也不是正确的选择。在Tableau或Powerbi中试试这个怎么样?我可以给你看。
你是专家。指导他们成为一个更好的数据科学家,并分享你的错误或偏见。
联系目标客户
你需要对你的目标客户有所帮助。知道他们存在的地方或上网。
您真的能做到这一点吗?
开始在网上赚取额外收入从来没有这么容易过,我已经提倡这一点很长一段时间了。
听起来可能很难,但你知道吗?你是数据科学专家,不是抖音!
你的事业通常更难,但总是更有回报!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08