
这篇文章的目的不是比较角色,好像一个人应该得到更多的钱或不应该得到更多的钱,而是一个指导,允许这两个领域的专业人士根据他们目前的工资进行评估。然而,这是陈词滥调,当要求更高的工资时,记住这两件事仍然很重要:要求无妨,有时,你不会得到你没有要求的东西。请记住,这些是更一般的统计数据,因为你可以根据你想要的具体情况来了解你的工资应该是多少。相反,这些值是供您使用的方向性指南。
数据科学家和数据工程师彼此分享某些技能和经验,然而,也有一些关键的差异,这些差异可能导致不同的工资。话虽如此,让我们从真实数据中跳到下面这两个角色的一些薪酬例子。
由于我已经写了几篇关于数据科学薪酬的文章,我将在这里包括最重要的信息,以及几个不同的例子。
以下是作为数据科学家,你可以看到的一些预期的职位,这些职位的工资也可能会有很大的变化:
入门级数据科学家→数据科学家→高级数据科学家
首席数据科学家-数据科学经理-数据科学总监
除了这些头衔,还有一些资历级别,如I级、II级和III级。
下面,我将按职称和他们各自所需或预期的年数显示工资范围。
请记住,这些角色基于美国平均值(基于PayScale[3]):
我同意这些数字吗?
没有。
如果你读过以前的文章,下面是我将包括不同城市的报告工资,以及不同的技能。
以下是具体的城市和技能:
城市的平均工资本身似乎更符合现实,而与城市相关的具体技能似乎太低了。我相信这是因为当你按照特定的技能进行过滤时,你就会剥离掉所有其他的技能。因此,一个解决办法可能是找到城市的平均工资,然后比较以上技能之间的差异,以获得更现实的工资估计。
我确实认为NLP技能不如Tableau有利可图是很有趣的,然而,我认为NLP可能太具体了,可能更少被误解,而Tableau被广泛理解,大多数数据科学家不认为在他们的简历中添加这一点,因为它更多的是面向数据分析师的--在你意识到你的工资或编辑你的简历时,这一点可能需要记住--长话短说,不要做假设,用你的技能来寻找独特的东西。
我不知道很多使用Java的数据科学家,但我确实认为这些报告中包含的数据有这种技能作为选择是很有趣的,所以也许Java有一个市场,原因我不确定(也许,这是软件工程师向数据科学家的过渡)。
现在,我们对数据科学的工资有了很好的了解,包括不同的因素,如地点和技能,让我们更深入地研究一下更具体的数据工程师工资是什么样子的。
在所有这些薪酬比较中,数据工程师和数据科学家似乎有一个更相似的范围,我们将在下面看到。
以下是作为一名数据工程师,你可以看到的一些预期的职位,这些职位的工资也可能会有很大的变化:
数据工程师→高级数据工程师→数据工程经理
首席软件工程师-数据科学家(是的,专攻数据工程)
除了这些头衔,还有一些资历级别,如I级、II级和III级。
下面,我将按职称和他们各自所需或预期的年数显示工资范围。
请记住,这些角色基于美国平均值(基于PayScale[5]):
我同意这些数字吗?
没有。
我认为每个职位至少应该换一次,因为在职业生涯早期,工资应该是职业生涯中期或有经验的数据工程师的工资,这也取决于你住在哪里--所以让我们深入研究具体的平均位置。
这些城市平均数比总体平均数更有意义。最有趣的是旧金山的不同,然而,仍然是意料之中的,因为那里的生活成本高得令人难以置信。
现在,让我们来看看这些城市的具体技能:
在所有这些工资中,旧金山市的工资在增加一项技能时有所下降--这一声明重申,在查看个性化报告时,你可能想增加所有技能,而不仅仅是一项技能。纽约看到了Scala最大的进步,我个人同意这一点,因为它是一项伟大的技能,很难掌握。
Salary has several characteristics that can either allow it to increase or decrease. We just talked about two factors, years of experience, location (city) and skills. There are other factors to consider as well, including, but not limited to: the interview itself, resume itself, negotiation skills, bonuses, shares, education, and certifications.
概括地说,以下是数据科学家与数据工程师薪酬的一些关键要点:
*美国数据工程师平均薪金92,519美元
*这两个职位的薪酬范围可能最相似
*数据科学家更专注于从现有的Python打包机器学习算法中创建模型,而数据工程师更专注于利用SQL对数据进行ETL/ELT
*有几个因素影响工资,最重要的可能是资历、城市和技能
我希望你觉得我的文章既有趣又有用。如果你同意或不同意这些工资比较,请随时在下面发表评论。为什么或为什么不?你认为在工资方面还有哪些重要的因素需要指出?这些当然可以进一步澄清,但我希望我能够揭示一些数据科学家和数据工程师工资之间的差异。
最后,我可以再问一遍同样的问题,你如何看待偏远职位对薪酬的影响,尤其是当城市是决定薪酬的一个重要因素时?
我也写了一篇类似的文章,讨论机器学习工程师的工资与数据科学家的工资在这里[6],以及数据科学家和数据分析师的工资在这里[7]的区别。这篇文章概述并强调了每一个,各自的工资的类似特点。请记住,对于这两篇文章,这些都不是我的工资,而是由PayScale和其他实际的数据科学家、数据工程师、数据分析师和机器学习工程师报告的。因此,这些文章是围绕真实数据进行的讨论,目的是让您更好地理解是什么使一个角色(一般)根据某些因素增加或减少工资金额。
同样,这个工资数据是从PayScale收集的,如果你想要一个更具体的估计,那么你可以使用salary survey[8]。
[1] Photo byRyan QuintalonUnsplash, (2019)
[2]Copernicoonunsplash的照片,(2020)
[3]PayScale,数据科学家薪酬,(2021)
[4]照片byFotis FotopoulosonUnsplash,(2018)
[5]PayScale,数据工程师薪酬,(2021)
[6]M.Przybyla,《数据科学家vs机器学习工程师工资》,(2021)
[7]M.Przybyla,《数据科学家vs数据分析师工资》,(2021)
[8]PayScale,PayScale薪酬调查,(2021)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17