
作者Leon Wei,Instamentor.com创始人,前高级经理。苹果的机器学习。
在2021年初离开苹果的最后一份工作之前,我已经做了六份企业工作,全职专注于InstamentorandSQLPad:我在Covid期间开始的两个副业项目。
但随着巨大的轨迹和增长,它们需要我的全力关注。我别无选择,只好离开在苹果的轻松工作。
今天,我不是在谈论Etherinstamentororsqlpad,因为它们仍处于早期阶段,未来有足够的时间进行研究。
相反,我想回顾一下我迄今为止的职业生涯,并分享几个故事,讲述在过去的14年中,我是如何将公司工作收入增长14倍的。
如果我能做到,你肯定能做到。
TLDR。
我在2007年开始了我的第一份全职工作,年薪美元。14年后的2020年,我14x年收入超过100万美元。
2004:我从中国获得学士学位后来到美国学习高等数学。
我很幸运:威廉玛丽学院应用科学系慷慨地为我提供了全额奖学金(我将永远感激,去部落!)和一份兼职研究助理工作,每月有1500美元的丰厚津贴(每年18K美元)。
2006:我的博士学位。顾问决定加入另一所大学,开始一个全新的学术项目,因为这是全新的,他们没有博士学位。学生,所以我不能和他一起移动。
回想起来,这可能是我在研究生院学习期间发生的最好的事情。
正如史蒂夫·乔布斯所说,“你不能把向前看的点连接起来,你只能把向后看的点连接起来。所以你必须相信这些点在你的未来会以某种方式联系在一起。“
事情就是这样。
我总是觉得在有限的实验数据样本上工作的积极性不高(在我的研究领域,收集数据非常昂贵)。
然而,作为一名数据研究人员,您几乎总是希望拥有一个更大的数据集:开发更好的统计模型并了解更多关于样本的信息,这通常会导致更好的模型性能。
起初我很恐慌,但很快意识到我有两个选择,要么找另一个博士。顾问,完成我的博士学位。(这肯定会让我父母感到骄傲)或者离开博士学位。程序,硕士毕业,找工作。
我决定辞去博士学位。并于2006年底开始找工作。
我很快得到了几个工作面试。2006年,美国经济非常火爆,就业机会很多,房地产市场也在过去几年里蓬勃发展。今天听起来很耳熟,不是吗?
我最终接受了一份数据挖掘研究(又名数据分析师)的工作,并被调到波士顿,年薪高达美元。
我几乎天真地以为我花不了那么多钱,所以没有太多犹豫,我买了一辆新萨博93,以取代我10年的福特福睿斯。
哦,当我收到第一张薪水,看到扣除的税款,我花了一年多的时间才还清我的汽车贷款(27K美元)时,我是不是很震惊。
但不管怎样,这仍然比我以前的研究助理工作要好得多。我挣了差不多4倍的钱,所以生活很棒。
2008-2010:我换了几份工作,搬到了西海岸(西雅图,华盛顿州)。我在当时世界上最大的在线广告网络公司Specific Media开始了一份新工作。
一年后,他们收购了MySpace,几年后,他们被时代公司收购。
收入:70K=>93K(15%)=>100K(20%)
2011年:我以110万美元的起始底薪加入亚马逊。他们还向我提供了7万美元RSU(4年归属)、35万美元第一年登录奖金和4万美元第二年登录奖金,每年约为15万美元:比我上一份工作增加了50%。
2013年:离开亚马逊,在CheggIPO前阶段加入,底薪190万美元,股票期权价值数百万美元(根据招聘团队的说法)。
(我也搬到了硅谷,后来遇到了很多了不起的人。)
嘿,谁不想去上市,发财,再也不用工作了?
但事实证明,2013年对IPO来说是糟糕的一年。
那一年上市的公司屈指可数,几乎都在股市上表现不佳。
2014:我加入了苹果公司(我一直是苹果产品的粉丝),所以当苹果公司的招聘人员联系到领英时,我非常兴奋,并非常努力地准备工作面试。
几周后,我幸运地通过了他们的面试(由于假期的原因,总共花了两个多月的时间)。
尽管我不得不做了一个小的基本工资削减,我得到了很好的补偿,以及签约奖金。
快进5到6年(2016年我离开去创建了一家机器学习初创公司,2017年回到苹果),2020年,我总共获得了大约5000股苹果股票,以今天的价值(每股160美元),我从公司工作中获得的总收入约为1至110万美元。
根据我的经验:我在公司工作中最显著的加薪来自苹果公司股票的升值,我也见过类似的情况发生在我以前的亚马逊同事身上。
当我第一次加入亚马逊时,它的股票大约是每股120美元,所以在过去的十年里,30涨到~3600美元。哇哦。
在我看来,获得50万或七位数收入的最可靠方法之一是加入一家FAANG公司,并在那里呆上至少四年,以获得所有最初的RSUs。
加入一家上市前的公司是非常有趣和令人兴奋的,但上市后你可能会很成功,也可能不会很成功(想想2018年加入优步,或者2019年加入WeWork)。
很多因素,时机,以及投资的一般经济环境都在IPO后的股票期权中发挥作用。
尽管如此,我永远不会忘记Chegg在纽约证券交易所上市那天的公司派对。今天真是太棒了!
几点注意:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09