京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者Leon Wei,Instamentor.com创始人,前高级经理。苹果的机器学习。
在2021年初离开苹果的最后一份工作之前,我已经做了六份企业工作,全职专注于InstamentorandSQLPad:我在Covid期间开始的两个副业项目。
但随着巨大的轨迹和增长,它们需要我的全力关注。我别无选择,只好离开在苹果的轻松工作。
今天,我不是在谈论Etherinstamentororsqlpad,因为它们仍处于早期阶段,未来有足够的时间进行研究。
相反,我想回顾一下我迄今为止的职业生涯,并分享几个故事,讲述在过去的14年中,我是如何将公司工作收入增长14倍的。
如果我能做到,你肯定能做到。
TLDR。
我在2007年开始了我的第一份全职工作,年薪美元。14年后的2020年,我14x年收入超过100万美元。
2004:我从中国获得学士学位后来到美国学习高等数学。
我很幸运:威廉玛丽学院应用科学系慷慨地为我提供了全额奖学金(我将永远感激,去部落!)和一份兼职研究助理工作,每月有1500美元的丰厚津贴(每年18K美元)。
2006:我的博士学位。顾问决定加入另一所大学,开始一个全新的学术项目,因为这是全新的,他们没有博士学位。学生,所以我不能和他一起移动。
回想起来,这可能是我在研究生院学习期间发生的最好的事情。
正如史蒂夫·乔布斯所说,“你不能把向前看的点连接起来,你只能把向后看的点连接起来。所以你必须相信这些点在你的未来会以某种方式联系在一起。“
事情就是这样。
我总是觉得在有限的实验数据样本上工作的积极性不高(在我的研究领域,收集数据非常昂贵)。
然而,作为一名数据研究人员,您几乎总是希望拥有一个更大的数据集:开发更好的统计模型并了解更多关于样本的信息,这通常会导致更好的模型性能。
起初我很恐慌,但很快意识到我有两个选择,要么找另一个博士。顾问,完成我的博士学位。(这肯定会让我父母感到骄傲)或者离开博士学位。程序,硕士毕业,找工作。
我决定辞去博士学位。并于2006年底开始找工作。
我很快得到了几个工作面试。2006年,美国经济非常火爆,就业机会很多,房地产市场也在过去几年里蓬勃发展。今天听起来很耳熟,不是吗?
我最终接受了一份数据挖掘研究(又名数据分析师)的工作,并被调到波士顿,年薪高达美元。
我几乎天真地以为我花不了那么多钱,所以没有太多犹豫,我买了一辆新萨博93,以取代我10年的福特福睿斯。
哦,当我收到第一张薪水,看到扣除的税款,我花了一年多的时间才还清我的汽车贷款(27K美元)时,我是不是很震惊。
但不管怎样,这仍然比我以前的研究助理工作要好得多。我挣了差不多4倍的钱,所以生活很棒。
2008-2010:我换了几份工作,搬到了西海岸(西雅图,华盛顿州)。我在当时世界上最大的在线广告网络公司Specific Media开始了一份新工作。
一年后,他们收购了MySpace,几年后,他们被时代公司收购。
收入:70K=>93K(15%)=>100K(20%)
2011年:我以110万美元的起始底薪加入亚马逊。他们还向我提供了7万美元RSU(4年归属)、35万美元第一年登录奖金和4万美元第二年登录奖金,每年约为15万美元:比我上一份工作增加了50%。
2013年:离开亚马逊,在CheggIPO前阶段加入,底薪190万美元,股票期权价值数百万美元(根据招聘团队的说法)。
(我也搬到了硅谷,后来遇到了很多了不起的人。)
嘿,谁不想去上市,发财,再也不用工作了?
但事实证明,2013年对IPO来说是糟糕的一年。
那一年上市的公司屈指可数,几乎都在股市上表现不佳。
2014:我加入了苹果公司(我一直是苹果产品的粉丝),所以当苹果公司的招聘人员联系到领英时,我非常兴奋,并非常努力地准备工作面试。
几周后,我幸运地通过了他们的面试(由于假期的原因,总共花了两个多月的时间)。
尽管我不得不做了一个小的基本工资削减,我得到了很好的补偿,以及签约奖金。
快进5到6年(2016年我离开去创建了一家机器学习初创公司,2017年回到苹果),2020年,我总共获得了大约5000股苹果股票,以今天的价值(每股160美元),我从公司工作中获得的总收入约为1至110万美元。
根据我的经验:我在公司工作中最显著的加薪来自苹果公司股票的升值,我也见过类似的情况发生在我以前的亚马逊同事身上。
当我第一次加入亚马逊时,它的股票大约是每股120美元,所以在过去的十年里,30涨到~3600美元。哇哦。
在我看来,获得50万或七位数收入的最可靠方法之一是加入一家FAANG公司,并在那里呆上至少四年,以获得所有最初的RSUs。
加入一家上市前的公司是非常有趣和令人兴奋的,但上市后你可能会很成功,也可能不会很成功(想想2018年加入优步,或者2019年加入WeWork)。
很多因素,时机,以及投资的一般经济环境都在IPO后的股票期权中发挥作用。
尽管如此,我永远不会忘记Chegg在纽约证券交易所上市那天的公司派对。今天真是太棒了!
几点注意:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22