京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家在他们的指尖有一个可能性的世界。其中许多都位于商业智能和数据分析领域。在商业环境中,发现增长机会和低效率以及击败竞争对手是最重要的,像这样的纪律可能是最有价值的。
数据专家可以通过了解首席财务官(CFO)关心的信息和报告来获得他们公司的首席财务官(CFO)的关注。数据科学可以提供增值和可操作的商业智能和预测。以下是如何让你的首席财务官侧耳倾听,为你的公司提供高质量的分析,并在此过程中提升你的价值和职业生涯。
到2030年,商业分析将成为一个价值6840亿美元的行业。能够帮助他们的公司和首席财务官在这场军备竞赛中领先的数据科学家往往会确保他们的地位,并很好地展示他们的价值。
为了做到这一点,数据科学家必须了解商业分析的主要类型,以及它们如何应用于企业规划的数字驱动游戏。
业务分析的这一分支提供对过去事件的洞察力,如公司业绩和更广泛的行业趋势。研究过去发生的事情有助于公司认清自己的弱点和长处。
对于首席财务官来说,这可能包括从市场波动和现金流问题到员工流失和支出模式等任何事情。其他因素也会影响公司的灵活性和对未来的准备。
诊断性商业分析建立在描述性分析发现的基础上。它提供了对公司数据的更详细的调查,以发现隐藏的风险和伤亡,并最终解释为什么事情会以这种方式发生。
这是为未来制定战略的一个至关重要的部分。清楚地看到哪里出现了低效或哪里出现了浪费,可以让首席财务官的工作变得容易得多。
预测性业务分析首先实现了收集组织数据的承诺。历史信息帮助数据科学家和决策者了解事件或趋势再次发生的可能性。在商业环境中,这包括预测劳动力的增长或下降,考虑需求和购买行为的未来变化,以及检测金融欺诈或网络安全事件。
财务规划和分析行业的专家表示,公司使用的方法并没有像许多人希望的那样迅速发展。在这一领域的强大的主题知识转化为在一个充满了未满足的数据分析专业人员需求的就业市场中的可取性。2021年,美国一些账户的公开职位列表约为14万份。
这种类型的业务分析是前几种分析的顶点。规定性分析将当前的洞察力与理性的、以数据为导向的对未来的推断相结合,并将其翻译成首席财务官和其他决策者关心的语言。
从原始数据到分析,再到针对高管的可操作建议的翻译缺少几个步骤。其中最关键的是报告工具。
数据科学家可以轻松地找到商业智能工具和仪表板的客观评论。他们需要知道如何表达决策者关心的信息,以便有效地向首席财务官和高管发言,
首席执行官、首席财务官和其他决策者最有可能感兴趣的一些仪表板包括以下内容:
今天市场上的许多工具都提供了为特定业务领域预先设计的模板。各种产品还可能包括数据分段和仓储功能,以组织可用数据--这是从其中获取任何附加价值的第一步。
在许多业务领域和关键工作流中,这种以数据为导向的思想交流正成为创新和业务精简的温床。以下是数据科学正在定义寻求更精简、更清洁、更有利可图和透明的公司结构的一些地方:
有没有一种途径可以让一个面向商业智能的数据科学家自己成为首席财务官?答案是肯定的--而且有成功的故事描述了这一进展。
一个例子是,一名数据监控系统专家--旨在发现欺诈迹象或锁定投资机会--将他对大数据主导的财务战略的知识引入首席财务官的角色。这里所利用的风险洞察力和商业机会,以及公司角色的飞跃,都是可能的,因为这位科学家知道如何很好地利用“数据枯竭”。
金融科技行业的数据监控和机器学习只是数据科学家角色补充首席财务官角色的一个地方。在商业智能报告和对工业每天产生的大量信息的深入分析之间,如果决策者知道如何抓住机会,数据科学家可以为他们提供很多东西。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26