
数据科学家在他们的指尖有一个可能性的世界。其中许多都位于商业智能和数据分析领域。在商业环境中,发现增长机会和低效率以及击败竞争对手是最重要的,像这样的纪律可能是最有价值的。
数据专家可以通过了解首席财务官(CFO)关心的信息和报告来获得他们公司的首席财务官(CFO)的关注。数据科学可以提供增值和可操作的商业智能和预测。以下是如何让你的首席财务官侧耳倾听,为你的公司提供高质量的分析,并在此过程中提升你的价值和职业生涯。
到2030年,商业分析将成为一个价值6840亿美元的行业。能够帮助他们的公司和首席财务官在这场军备竞赛中领先的数据科学家往往会确保他们的地位,并很好地展示他们的价值。
为了做到这一点,数据科学家必须了解商业分析的主要类型,以及它们如何应用于企业规划的数字驱动游戏。
业务分析的这一分支提供对过去事件的洞察力,如公司业绩和更广泛的行业趋势。研究过去发生的事情有助于公司认清自己的弱点和长处。
对于首席财务官来说,这可能包括从市场波动和现金流问题到员工流失和支出模式等任何事情。其他因素也会影响公司的灵活性和对未来的准备。
诊断性商业分析建立在描述性分析发现的基础上。它提供了对公司数据的更详细的调查,以发现隐藏的风险和伤亡,并最终解释为什么事情会以这种方式发生。
这是为未来制定战略的一个至关重要的部分。清楚地看到哪里出现了低效或哪里出现了浪费,可以让首席财务官的工作变得容易得多。
预测性业务分析首先实现了收集组织数据的承诺。历史信息帮助数据科学家和决策者了解事件或趋势再次发生的可能性。在商业环境中,这包括预测劳动力的增长或下降,考虑需求和购买行为的未来变化,以及检测金融欺诈或网络安全事件。
财务规划和分析行业的专家表示,公司使用的方法并没有像许多人希望的那样迅速发展。在这一领域的强大的主题知识转化为在一个充满了未满足的数据分析专业人员需求的就业市场中的可取性。2021年,美国一些账户的公开职位列表约为14万份。
这种类型的业务分析是前几种分析的顶点。规定性分析将当前的洞察力与理性的、以数据为导向的对未来的推断相结合,并将其翻译成首席财务官和其他决策者关心的语言。
从原始数据到分析,再到针对高管的可操作建议的翻译缺少几个步骤。其中最关键的是报告工具。
数据科学家可以轻松地找到商业智能工具和仪表板的客观评论。他们需要知道如何表达决策者关心的信息,以便有效地向首席财务官和高管发言,
首席执行官、首席财务官和其他决策者最有可能感兴趣的一些仪表板包括以下内容:
今天市场上的许多工具都提供了为特定业务领域预先设计的模板。各种产品还可能包括数据分段和仓储功能,以组织可用数据--这是从其中获取任何附加价值的第一步。
在许多业务领域和关键工作流中,这种以数据为导向的思想交流正成为创新和业务精简的温床。以下是数据科学正在定义寻求更精简、更清洁、更有利可图和透明的公司结构的一些地方:
有没有一种途径可以让一个面向商业智能的数据科学家自己成为首席财务官?答案是肯定的--而且有成功的故事描述了这一进展。
一个例子是,一名数据监控系统专家--旨在发现欺诈迹象或锁定投资机会--将他对大数据主导的财务战略的知识引入首席财务官的角色。这里所利用的风险洞察力和商业机会,以及公司角色的飞跃,都是可能的,因为这位科学家知道如何很好地利用“数据枯竭”。
金融科技行业的数据监控和机器学习只是数据科学家角色补充首席财务官角色的一个地方。在商业智能报告和对工业每天产生的大量信息的深入分析之间,如果决策者知道如何抓住机会,数据科学家可以为他们提供很多东西。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08