
对于经常阅读我文章的人来说,你可能会认为我是这个星球上最矛盾的人。我不怪你。
我最近注意到,在与人的口头或书面交流中,我对与我交流的人做出了大量的假设。我没有明确地定义非常重要的方面,然后才确切地说明我所说的话,这取决于上下文,有可能冲淡我希望传达的实际信息。
最近,我写了一篇关于如何通过网络简化进入数据科学的初始阶段的文章。作为对这篇文章的回应,我在LinkedIn上收到了很多连接请求,表示他们希望与我连接,以便建立他们的专业网络。
别误会,我对与我交往的人没有意见。事实上,我在写的每一篇文章的结尾都鼓励它。我非常感激我处于一个人们希望与我联系并跟随我在数据科学之旅的位置。与大家分享我的经验的目的是,我希望从我的角度来表达作为一名数据科学家或自由职业者的现实,因为我们都在努力成为不可或缺的。
平淡无奇地说…
联网是浪费时间!
哎呀,我又做了一次。让我解释一下…我们知道的网络方式,或者我们被告知要做的方式,已经完全死了。
事实上,我还没有想出一个足够好的名称来描述什么是真正的网络,所以我仍然将“真正的网络方式”称为网络。
很有可能浪费时间构建你的数据科学网络。这是它的样子;
在我看来,这种网络形式不是网络。完全是哑弹。浪费时间。
以下是我对网络的看法…
如果你正在制作一些有趣的东西,那么总会有人想了解你。
简单明了。
为什么人们想见埃隆·马斯克?如果你说因为他是亿万富翁,你又一次掉进了陷阱。这是错误的心态。如果你在想他的数十亿美元,很可能你在想这对你有什么好处。这是接受者的心态。
人们想见埃隆·马斯克,因为他做人们想要的东西。他是个解决问题的人,我们需要他!
如果您正试图基于上面列出的3个原因中的任何一个建立网络,您绝对是在浪费时间--这些时间可以用来建立人们想要的有趣的东西,从而导致人们想要了解您。
如果你看看LinkedIn上讨论数据科学的热门人士,你就会明白我在说什么;
名单还在继续…
我知道你在读我和你分享的名单时在想什么-
“这些人都在这个领域工作了多年”。
这是千真万确的…每一座建筑都必须从某个地方开始。
分4步开始您的数据科学之旅
从本质上说,当我提到网络时,我想说的是,你应该专注于创造人们想要的东西。做一个创造者。这样,合适的人就会来找你。
从我的观察来看,与我联系在一起的人中最难忘的是那些与我联系在一起的人,原因如下;
这并不是说我没有人和我联系,向我询问工作和其他不在这份清单上的事情,我有。但是,这些人很快就消失了。
在我看来,如果你发现自己试图与网上的人联系除了这三个原因,那么我建议你抓住自己的行为。无论你做什么或说什么,都可能令人绝望,并可能在关系开始前危及关系。
如果你真的想建立一个强大的网络,在你决定开始创建的那一刻,合适的人就会找到你。
要开始创作,你不需要像我一样从一个博客开始;你有很多不同的方法来创造人们想要的东西。
这些想法不必从细节开始。重要的是你开始创造并分享你所创造的--最终,合适的人会来找你。
最重要的数据科学项目
一开始,成为一个创作者并分享你在网上做的事情似乎是一项艰巨的任务,尤其是如果你像我一样天生内向的话--克服这个问题始于分享一件事,然后永远不要停止。如果你希望发展一个强大而健康的网络,那么重要的是你要站在造物主的立场上--从那时起,一切都会来到你身边。
请在LinkedInandTwitters上与我联系,了解我关于数据科学、人工智能和自由职业的最新消息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15