京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当你成为一名数据科学家时,很容易认为你完全了解这个领域,知道在这个行业中发展所需的所有主要工具和技术。然而,事实并不一定如此。事实上,数据科学的变化就像世界本身一样迅速和容易--一直如此!
当然,数据科学比以往任何时候都更加重要。不分行业,组织使用数据科学:
因此,数据科学家是负责收集、分析和发布数据集结果的专家。尽管数据科学在未来的重要性不太可能降低,但毫无疑问,随着关键度量或数据分析方法的变化,它将作为一个行业发生变化。
如果你是一名数据科学家,你必须与行业一起发展,而不是停滞不前。如果你和你的行业一起成长,你会:
就像商人需要在他们的技能组合中成长一样,数据科学家也必须在我们生活的不断变化的世界中成长。说到这里,让我们来分解一下如何在职业发展的同时发展数据科学技能。
博客圈,尤其是数据科学和类似行业,如科技或金融,比以往任何时候都更大、更强大。这对于一线数据科学家或那些使用被谈论的技术的人来说是很好的。
为什么?因为它使数据科学家能够很容易地跟上机器学习等新的发展,关注该行业如何发展,并通过阅读关于数据科学本身的博客文章来学习新的东西。
这不仅对你的职业生涯和心理健康有好处,而且对你理解数据科学作为一个专业也有好处。此外,无论你在数据科学方面有多好,你的理解至少有几个差距。
好消息:数据科学博客和发表的研究论文通常可以填补这些空白,让你对整个行业有更全面的了解。最重要的是,如果你养成了一个健康的博客习惯,你就会保持一个学习的常规,这将为你中年乃至更长的时间服务。
简而言之,写博客和阅读关于数据科学的研究论文可以帮助你保持正确的批判性思维纪律,以及撰写和阅读关于数据科学和分析的文章。
在某些情况下,及时了解新的发展可能会帮助你在申请一个更高薪的职位时成为一个更有吸引力的人。
说到申请薪酬更高的职位,所有数据科学家都应该尽可能地寻找在职业生涯和薪酬范围内进步的机会。
我们早已过去了雇员在同一家公司工作20年或更长时间的经济环境。现在,是时候做一个数据科学家雇佣军,把你的专业技能卖给支付最多的人了。
这对你的职业轨迹很好,当然,就像对你的钱包一样。但确保您始终处于数据科学领域的前沿也是很好的。如果你申请并被聘用为高薪职位,你将有更大的机会与新的数据科学技术和技术互动。
结果呢?你会成为一个更好、更全面的数据科学家,将来晋升或获得更高收入的职位也会更容易。在许多方面,积极追求新职位或晋升是一个滚雪球效应,申请新工作变得更容易,你追求这种策略的时间越长,你就越成功。
虽然有一个主要的职业重点或目标很重要,但列出一个你可以在空闲时间做的副业项目清单也很重要。
让我们面对现实吧:大多数数据科学工作并不是那么有趣,尤其是如果你只是为了拿薪水而工作的话。但是,许多数据科学家最初是因为对数据科学的热情而进入这个领域的。
您可以通过开发应用程序、在Statista上分析数据集等辅助项目来保持对该领域的热情,并享受自己的乐趣。
例如,根据最近的一项调查,62%的受访者更喜欢用一款应用来管理他们的投资。那么,有谁能比像你这样的数据科学家更好地开始开发一个以数据为中心的投资应用程序完美地适合这些人的愿望呢?
从上面的例子中你可以看到,边项目也是建立投资组合的好机会,你也可以利用这些投资组合获得高薪职位。副业项目经常给你机会,以传统职位所没有的方式来展示你的创造性数据科学肌肉。
最后,通过使用在线资源练习数据科学来保持你的技能敏锐和准备就绪。互联网提供了一个充满挑战的机会来考验你的技能,例如:
更好的是,一些在线挑战附带了证书,你可以把这些证书放在简历或LinkedIn个人资料中。再一次,完成这些挑战并获得任何相关证书可以让你成为一个更有吸引力的职位,当你的梦想职位出现时。
总而言之,作为一名数据科学家的成长比以往任何时候都重要,尤其是当新的专业人员进入工作队伍并成为你的竞争对手时。按照上面的建议,你将保持一个目光敏锐、思维前瞻的数据科学家,对你所在领域的新技术和发展有充分的了解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05