
当你成为一名数据科学家时,很容易认为你完全了解这个领域,知道在这个行业中发展所需的所有主要工具和技术。然而,事实并不一定如此。事实上,数据科学的变化就像世界本身一样迅速和容易--一直如此!
当然,数据科学比以往任何时候都更加重要。不分行业,组织使用数据科学:
因此,数据科学家是负责收集、分析和发布数据集结果的专家。尽管数据科学在未来的重要性不太可能降低,但毫无疑问,随着关键度量或数据分析方法的变化,它将作为一个行业发生变化。
如果你是一名数据科学家,你必须与行业一起发展,而不是停滞不前。如果你和你的行业一起成长,你会:
就像商人需要在他们的技能组合中成长一样,数据科学家也必须在我们生活的不断变化的世界中成长。说到这里,让我们来分解一下如何在职业发展的同时发展数据科学技能。
博客圈,尤其是数据科学和类似行业,如科技或金融,比以往任何时候都更大、更强大。这对于一线数据科学家或那些使用被谈论的技术的人来说是很好的。
为什么?因为它使数据科学家能够很容易地跟上机器学习等新的发展,关注该行业如何发展,并通过阅读关于数据科学本身的博客文章来学习新的东西。
这不仅对你的职业生涯和心理健康有好处,而且对你理解数据科学作为一个专业也有好处。此外,无论你在数据科学方面有多好,你的理解至少有几个差距。
好消息:数据科学博客和发表的研究论文通常可以填补这些空白,让你对整个行业有更全面的了解。最重要的是,如果你养成了一个健康的博客习惯,你就会保持一个学习的常规,这将为你中年乃至更长的时间服务。
简而言之,写博客和阅读关于数据科学的研究论文可以帮助你保持正确的批判性思维纪律,以及撰写和阅读关于数据科学和分析的文章。
在某些情况下,及时了解新的发展可能会帮助你在申请一个更高薪的职位时成为一个更有吸引力的人。
说到申请薪酬更高的职位,所有数据科学家都应该尽可能地寻找在职业生涯和薪酬范围内进步的机会。
我们早已过去了雇员在同一家公司工作20年或更长时间的经济环境。现在,是时候做一个数据科学家雇佣军,把你的专业技能卖给支付最多的人了。
这对你的职业轨迹很好,当然,就像对你的钱包一样。但确保您始终处于数据科学领域的前沿也是很好的。如果你申请并被聘用为高薪职位,你将有更大的机会与新的数据科学技术和技术互动。
结果呢?你会成为一个更好、更全面的数据科学家,将来晋升或获得更高收入的职位也会更容易。在许多方面,积极追求新职位或晋升是一个滚雪球效应,申请新工作变得更容易,你追求这种策略的时间越长,你就越成功。
虽然有一个主要的职业重点或目标很重要,但列出一个你可以在空闲时间做的副业项目清单也很重要。
让我们面对现实吧:大多数数据科学工作并不是那么有趣,尤其是如果你只是为了拿薪水而工作的话。但是,许多数据科学家最初是因为对数据科学的热情而进入这个领域的。
您可以通过开发应用程序、在Statista上分析数据集等辅助项目来保持对该领域的热情,并享受自己的乐趣。
例如,根据最近的一项调查,62%的受访者更喜欢用一款应用来管理他们的投资。那么,有谁能比像你这样的数据科学家更好地开始开发一个以数据为中心的投资应用程序完美地适合这些人的愿望呢?
从上面的例子中你可以看到,边项目也是建立投资组合的好机会,你也可以利用这些投资组合获得高薪职位。副业项目经常给你机会,以传统职位所没有的方式来展示你的创造性数据科学肌肉。
最后,通过使用在线资源练习数据科学来保持你的技能敏锐和准备就绪。互联网提供了一个充满挑战的机会来考验你的技能,例如:
更好的是,一些在线挑战附带了证书,你可以把这些证书放在简历或LinkedIn个人资料中。再一次,完成这些挑战并获得任何相关证书可以让你成为一个更有吸引力的职位,当你的梦想职位出现时。
总而言之,作为一名数据科学家的成长比以往任何时候都重要,尤其是当新的专业人员进入工作队伍并成为你的竞争对手时。按照上面的建议,你将保持一个目光敏锐、思维前瞻的数据科学家,对你所在领域的新技术和发展有充分的了解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26