京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		
	
今天CDA给大家分享的内容:手把手教你对文本文件进行分词、词频统计和可视化
作者: Python进阶者
来源:Python爬虫与数据挖掘
大家好!我是Python进阶者。
前几天一个在校大学生问了一些关于词频、分词和可视化方面的问题,结合爬虫,确实可以做点东西出来,可以玩玩,还是蛮不错的,这里整理成一篇文章,分享给大家。
本文主要涉及的库有爬虫库requests、词频统计库collections、数据处理库numpy、结巴分词库jieba 、可视化库pyecharts等等。
关于数据方面,这里直接是从新闻平台上进行获取的文本信息,其实这个文本文件可以拓展开来,你可以自定义文本,也可以是报告,商业报告,政治报告等,也可以是新闻平台,也可以是论文,也可以是微博热评,也可以是网易云音乐热评等等,只要涉及到大量文本的,都可月引用本文的代码,进行词频分词、统计、可视化等。
数据获取十分简单,一个简单的爬虫和存储就可以搞定,这里以一篇新闻为例进行演示,代码如下:
import re import collections # 词频统计库 import numpy as np # numpy数据处理库 import jieba # 结巴分词 import requests from bs4 import BeautifulSoup from pyecharts import options as opts from pyecharts.charts import WordCloud from pyecharts.globals import SymbolType import warnings warnings.filterwarnings('ignore') r=requests.get("https://m.thepaper.cn/baijiahao_11694997",timeout=10) r.encoding="utf-8" s=BeautifulSoup(r.text,"html.parser") f=open("报告.txt","w",encoding="utf-8") L=s.find_all("p") for c in L: f.write("{}n".format(c.text)) f.close()
代码运行之后,在本地会得到一个【报告.txt】文件,文件内容就是网站上的文本信息。如果你想获取其他网站上的文本,需要更改下链接和提取规则。
接下来就是词频统计了,代码如下所示。
# 读取文件
fn = open("./报告.txt","r",encoding="utf-8")
string_data = fn.read()
fn.close()
# 文本预处理
# 定义正则表达式匹配模式
pattern = re.compile(u't|,|/|。|n|.|-|:|;|)|(|?|"') 
string_data = re.sub(pattern,'',string_data)  # 将符合模式的字符去除
# 文本分词
# 精确模式分词
seg_list_exact = jieba.cut(string_data,cut_all=False)  
object_list = []
# 自定义去除词库
remove_words = [u'的',u'要', u'“',u'”',u'和',u',',u'为',u'是',
                '以' u'随着', u'对于', u'对',u'等',u'能',u'都',u'。',
                u' ',u'、',u'中',u'在',u'了',u'通常',u'如果',u'我',
                u'她',u'(',u')',u'他',u'你',u'?',u'—',u'就',
                u'着',u'说',u'上',u'这', u'那',u'有', u'也',
                u'什么', u'·', u'将', u'没有', u'到', u'不', u'去'] 
微信复制
for word in seg_list_exact:
    if word not in remove_words:
        object_list.append(word)
# 词频统计
# 对分词做词频统计
word_counts = collections.Counter(object_list) 
# 获取前30最高频的词
word_counts_all = word_counts.most_common()
word_counts_top30 = word_counts.most_common(30) 
print("2021年政府工作报告一共有%d个词"%len(word_counts))
print(word_counts_top30)
首先读取文本信息,之后对文本进行预处理,提取文字信息,并且可以自定义词库,作为停用词,之后将获取到的词频做词频统计,获取前30最高频的词,并进行打印,输出结果如下图所示。
接下来就是可视化部分了,这里直接上代码,如下所示。
import pyecharts from pyecharts.charts import Line from pyecharts import options as opts # 示例数据 cate = [i[0] for i in word_counts_top30] data1 = [i[1] for i in word_counts_top30] line = (Line() .add_xaxis(cate) .add_yaxis('词频', data1, markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")])) .set_global_opts(title_opts=opts.TitleOpts(title="词频统计Top30", subtitle=""), xaxis_opts=opts.AxisOpts(name_rotate=60,axislabel_opts={"rotate":45})) ) line.render_notebook()
输出结果是一个线图,看上去还不错。
本文基于Python网络爬虫获取到的文本文件,通过词频、分词和可视化等处理,完成一个较为简单的项目,欢迎大家积极尝试。
	
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关 ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28