
作者:李晓飞
来源:Python 技术
今天我来分享一个迁移过程的幕后小故事,有料,有趣,来听听吧。
迁移公众号,是一个腾讯提供的业务,就是将原公号主体切换到另一个公号上,然后收回原公号。
其中大部分是腾讯来完成的,但还有些工作,需要自己处理,比如迁移公号的 关键字消息回复。
虽然事情不大,但很重要,做不好,读者就会找不见源码,影响大家学习效率。
但单操作起来还是比较费劲的,因为需要同时登录两个公众号,打开两个页面,来回切换着操作,很不方便,而且容易搞错。
怎么办,求神拜佛肯定是没有用的,不过有位大神还真得去拜拜 —— Python!
既然网页上能看到,那么就一定能用爬虫获取到。
咱们故伎重演,浏览器中按下 F12,进入魔法世界。
你知道百度的校招启事就藏在这里吗?
别说是我告诉你的
第一步,先清空请求记录,刷新页面,然后从第一条请求记录开始分析。
实际上就是看看请求的返回值,是否包含了,页面上列表中的数据。
幸运的是第一条就是,不过呢,数据不是直接给的,而是返回了一个大 js 脚本,当页面加载后,运算出的。
分析请求
需要勾上 Perserve Log 否则有用页面切换可能看不见请求记录
这个不是困难,将js复制出来,提取其中关键字回复的信息整理一下就可以了。
问题是,每页只显示十条,有二十多页,复杂的成本有点高呀。
得想想办法,观察了一下网址,其中有两个参数,一个是 count,另一个是 offset,很熟悉呀,不和分页参数是一回事儿吗?
分析请求
改一下试试,将 count 改为 1000,offset 改为 0,意思是从第一行开始,获取一千条,按下回车 ……
搞定!
仔细检查,确实返回了所有记录,因为总共也没有一千行。
现在可以蛮干了,因为就干一次。
复制出来,用文本编辑器(最好支持列编辑)简单处理一下,得到一个 json
json
所以方法需要灵活应用,如果能直接通过程序获取最好,如果不行,手动辅助也是可以的。
接下来,才是重头戏,如何将这些数据写入。
进入新公众号的管理后台,新建一个关键字回复,分析下请求,此时别忘记,打开开发者工具(浏览器上按 F12)。
一般提交类请求都是第一个,看一下果然是,不过肉眼看不清具体数据,怎么办?
还记得前面好多次提到的将请求复制为 curl bash 吗?对就用它,在请求上右键,选择 Copy as cURL(bash)
copy cURL
放在哪里呢?当然不是放在文本文件里了,除非你是想做一下暂存。
我们直接粘贴到 https://curl.trillworks.com/ 里,可以直接获得 转化好的 Python 代码。
然后将 Python 代码复制到文件中,执行看看效果,果然,新增了一条记录。
下面分析请求数据, 与刚才 json 文件中的做对比,一般名称很相近,所以容易找出来。
字段相同,可能是来自同一个架构设计,不太可能出自不同的团队开发,哈哈,我竟然看的这么深!
这样边找边写,等找完,代码也就完成了,像这样:
data = {
'replytype': 'smartreply',
'ruleid': '0',
'rulename': kw['rule_name'], # 规则名
'allreply': kw['reply_all'], # 全回复
'replycnt': kw['reply_cnt'], # 回复数量
'keywordcnt': len(kw['keyword_list']), # 关键字数量
'keyword0': kw['keyword_list'][0]['content'], # 关键字
'matchmode0': kw['keyword_list'][0]['match_mode'], # 匹配模式
'type0': kw['reply_list'][0]['reply_type'], # 消息类型
'fileid0': 'undefined',
'content0': kw['reply_list'][0]['content'], # 回复内容
'token': '105xxxx502',
'lang': 'zh_CN',
'f': 'json',
'ajax': '1'
}
现在将各部分的代码组合起来。
首先是解析 json 的代码:
with open("keyword.js", 'r', encoding='utf-8') as word:
d = json.load(word)
超级简单,利用 json 库将 keyword.js 文件中的内容转化为 Python List 对象
然后是数据组合,代码已经在上面展示了。
最后发送请求:
add(data) print('处理完成,休息2秒...') time.sleep(2)
好了,这样搞定了,写代码用了一个多小时,跑完不到两分钟。
美中不足的是,代码只照顾了大多数的一条消息的回复(代码中直接获取的数组中第一个元素, 如 kw['reply_list'][0]),还有几条回复是多条消息,照顾不上。
如果要照顾,可能的话 80% 以上的时间,以兼容 20% 不到的情况,不划算。
怎么办?凉拌!—— 直接手动添加。
哈哈,我很乐意做这一点手工活儿。
类似这样的方式,用在其他的地方,完全是可以的,比如之前的约马程序,训练营运营数据提取 等等,都是一样的套路:
就这么简单,Get 到了吗?
那,赶紧找个地方试试吧。
每天进步一点点,生活更美好,比心!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09