
来源:丁点帮你
作者:丁点helper
之前的文章讲了如何用R绘制箱形图,以此来帮助我们了解数据的整体分布情况、是否存在异常值。除此之外,箱形图还可以进行数据的组间比较。
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
本次我们用到的是学生的课堂调查数据,包括了性别、年级、专业、身高、最喜欢的动物(讲数据清理时用的是这个变量,还记得吗)等变量。数据名:survey.csv,数据链接:
首先导入数据,存入survey这个数据集中:
survey <- read.csv("//Users//Desktop//survey.csv",
header = TRUE) # 获取数据中包含的变量名 names(survey)
[1] "ClassProb" "Status" "Year" "Division" "Gender" "HtCm" "Hand" "Haircut" "Exercise" [10] "Coursework" "Web" "TV" "Social" "Econ" "Animal" "Friends" "Pulse"
接下来我们以Gender作为分组依据,先来看看这个变量的情况。
table(survey$Gender) Choose not to answer Female Gender non-conforming Male 1 1 117 1 118
我们发现,除了female和male,有的同学回答了Choose not to answer,Gender non-conforming,还有同学什么都没填,空缺。
今天我们暂时将这三种特殊情况从数据中删去。
# 查看针对Gender这个变量,同学们有几类回答 levels(survey$Gender)
[1] "" "Choose not to answer" "Female" "Gender non-conforming" "Male"
在这五类回答中,我们想保留的是第3、第5类。也就是说,仅保留Gender为"Female" 或 "Male"的记录。
# 把更新后的数据存储在survey2这个对象中 survey2 <- survey[survey$Gender %in% levels(survey$Gender)[c(3,5)],]
这里,a %in%b的作用是,用a中的元素去匹配b中的任意元素,如果匹配成功,则返回结果为TRUE,反之,则结果为FALSE。
此时,上面的语句就简化为如下所示,c()里面是TRUE和FALSE的集合,是a中每个元素与b匹配的结果。
survey2 <- survey[c(),] # 这是为了便于理解写的简化语句,不能够运行的
survey2中仅保留了匹配结果为TRUE的记录:
table(survey2$Gender) Choose not to answer Female Gender non-conforming Male 0 0 117 0 118
哎?虽然记录被删了,但Gender中之前包含的五个类都还在,用下面的droplevels()这个函数删掉那些没有记录的类。
survey2$Gender <- droplevels(survey2$Gender)
table(survey2$Gender)
Female Male
117 118
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
数据清理好之后,我们以身高HtCm这个变量为例,先用之前讲过的方法绘制箱形图,了解改变量的整体分布,然后对比性别之间的身高差异。
boxplot(survey2$HtCm, main="Boxplot of Ht in cm", col='orange', lwd=2)
一目了然,我们调查的是大学学生,却出现了身高小于100厘米的情况,不符合常理。现在去检查一下原始数据。
sort(survey2$HtCm) # 将身高从小到大排序
部分结果截图
实际操作中,大家要尽量核实那些极端身高数据的真实情况,修正数据。这里我们为便于教学,直接把那些小于100厘米的身高值记录为缺失。
然后利用整理后的身高数据绘制箱形图。
survey2$HtCm[survey2$HtCm < 100 ] <- NA
boxplot(survey2$HtCm, main="Boxplot of Ht in cm",
col='orange', lwd=2)
最后绘制不同性别学生的身高箱形图。
boxplot(survey2$HtCm~survey2$Gender,
main="Boxplot of Ht in cm",
col=c(2,3), lwd=2)
由图可知,男生的身高基本都高于女生。将两个箱形图放在一起,可以清晰地看到两组变量的大致情况,便于给两组做粗略的比较。
但是这男女生身高到底有没有统计学上的差异,肉眼是很难得出结论的,统计学上怎么做呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08