京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:早起Python
作者:陈熹、刘早起
大家好,又到了Python办公自动化(偷懒)专题。
今天介绍的案例是如何利用Python来自动化移动、修改、重命名文件/夹,这样的操作在日常办公中经常会用到,若能掌握用Python实现将会大大提高效率!
所以我希望能够通过这篇文章来让大家了解:如何基于 os glob 和 shutil 对文件管理的综合运用!
为了让本文介绍的案例更有通用型,我新建了一个文件夹 files1 存放着 1800+ 个文件,如下所示:
需要完成的内容如下
“
将 1835 个文件移动到新文件夹 file2,并且重命名文件,名字开头加上 序号 和 “终稿” 两个字,如名字更改为 “1-终稿-xxxxx(原文件名)”
”
你心里可能想着:这是人做的事??? 但确实这是真实的需求,文件批量重命名非常常见,如果没有一些技巧,那么只能耗费大量的时间和人力去做。这里的技巧,就是 Python
另外还有一个问题:要先移动再重命名还是先重命名再移动呢? 继续往下看!
真实的办公场景并不会这样的需求,毕竟谁想要无端给自己的电脑产生大量无用文件呢(也不要给别人的电脑乱用)
不得不提,生成随机文件能够帮助我们更好的测试自己 Python 文件管理的技能。如果你没有合适的文件夹和文件夹供自己练习,那么为什么不自己写个代码产生呢?
当然,在这个过程中我们也会学习一些知识点,先看代码:
import random import string for i in range(2000):
random_str = ''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11)))
file = open(r"C:\xxx\file1" + random_str + ".txt", 'w+') # 前面路径是产生文件的目标文件夹
file.write(''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11))))
file.close()
通过 string 就可以获得所有的字母和数字,利用 random.sample() 常规接受两个参数,一个是抽样的范围,一个是抽样的次数,默认是放回抽样。这样就可以在给定的字母数字范围内随机抽取 1-10 个,但是返回的结果注意是列表,需要再用 .join 方法完成字符串拼接
用随机产生的名字生成文件后,再在其内部用类似的方法随机写入一些内容:
上面的写法不够优雅,因为需要配套使用 file.close() 释放,更好的方法是直接利用上下文管理器 with 结构,减少出错的几率
import random import string for i in range(2000):
random_str = ''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11)))
with open(r"C:\xxx\file1" + random_str + ".txt", 'w+') as file:
file.write(''.join(random.sample(string.ascii_letters + string.digits, random.randint(1, 11))))
因为即使是随机产生名字,但抽样的范围和次数不大决定了 2000 次抽样会有一些抽签组合成的名字完全一样,后面形成的文件会覆盖之前产生的文件,最终导致产生的文件没有 2000 个。
需要用到内置库 os 的 os.rename() 方法
import os os.rename('practice.txt', 'practice_rename.txt') # 重命名文件 os.rename('文件夹1', '文件夹2') # 重命名文件夹
虽然需求中有重命名文件的需求,但实际上并不需要直接借助这个方法
需要用到内置库 shutil 的 shutil.move 方法
import shutil
shutil.move(r'.practice.txt', r'.文件夹1/')
shutil.move(r'.practice.txt', r'.文件夹1/new.txt')
注意到上面后两行代码的区别吗?前一行是将目标文件移动到目标文件夹里,而后一行,在将目标文件移动到目标文件夹里的同时,能够对其进行重命名
也就是说,我们并不需要用 os.rename 先命名文件再用 shutil.move 将其移动的指定文件夹,而是可以用 shutil.move 一步到位。
采用基于 glob 库的迭代框架:
import glob
path = xxx for file in glob.glob(f'{path}/**/*.xlsx', recursive=True):
pass
上面的代码能够获取给定路径内部所有文件夹下的 Excel 文件(.xlsx 格式), recursive 参数默认为 False,当为 True 时允许逐级遍历
而本例需要获取给定文件夹下的所有 .txt 文件,则更加简单:
import glob
path = xxx for file in glob.glob(f'{path}/*.txt'):
pass
在上面一节我们已经把需求拆分为多个小块并理清了思路,现在可以开始写代码了。首先导入需要的库
import os import shutil import glob
path = r"C:xxx" # 存放大量需更名移动文件的文件夹路径的上一级路径
上文提到,不需要利用 os.rename 那为什么要导入 os 库呢?
一方面因为要通过这个库产生新的文件夹。也可以手动完成,但交给代码多了判断也不容易出错:
if not os.path.exists(path + r'file2'):
os.mkdir(path + r'file2')
另一方面下文还会用它获取文件名,然后就可以移动更名一步到位,glob 迭代文件框架遍历获取文件绝对路径:
count = 1 # 生成序号 for file in glob.glob(f'{path}\测试\*.txt'):
# 这里是文件绝对路径,可以用字符串方法直接替换修改,但为了方便理解我还是用路径拼接 filename = os.path.basename(file)
shutil.move(file, path + r'file2' + f'{count}-终稿-{filename}')
count += 1
看到没,Python、3秒、搞定、干饭!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18