
来源:AI入门学习
作者:伍正祥
在克里米亚战争期间,南丁格尔发现战地医院的卫生条件恶劣导致很多士兵死亡。因此,她开始研究伤员的死亡和卫生环境的关系,并试图用统计数据说服维多利亚女王改善军事医院的卫生条件。但是她也担心,女王那么忙,没有时间看她那厚厚的报告和那些复杂的表格数据。于是,她设计了上面的这个生动又有趣的图表,巧妙的展示了部队医院季节性的死亡率。她自己给它取名叫鸡冠花图(coxcomb)。
我们先来看看最早的南丁格尔玫瑰图展示了什么样的数据。这张图展示的是1854年4月到1855年3月这一年间士兵的死亡情况。其中:
1)绿色表示死于可预防疾病的士兵人数;
2)红色表示死于枪伤的人数;
3)黑色表示死于其他意外的人数。
从图中可以看出,在这一年间,死亡人数最多的并不是在战争中受枪伤(红色部分),大部分的士兵是死于可预防疾病(绿色部分),特别是冬天的时候(1854年11月-1855年2月),死于可预防疾病的士兵人数大幅增加。这也反映出医院的卫生条件、保暖对于伤员的康复是多么的重要。因此,才说服了女王大人改善医院条件。
这么有气质的图表,我们来看看经过这么多年的发展,大家都是怎么用的。尽管外形很像饼图,但本质上来说,南丁格尔玫瑰图更像在极坐标下绘制的柱状图或堆叠柱状图。只不过,它用半径来反映数值(而饼图是以扇形的弧度来表示数据的)。但是,由于半径和面积之间是平方的关系,视觉上,南丁格尔玫瑰图会将数据的比例夸大。因此,当我们追求数据的准确性时,玫瑰图不一定是个好的选择。但反过来说,当我们需要对比非常相近的数值时,适当的夸大会有助于分辨。
1. Facebook 和 twitter的用户对比
1)图表中包括性别、年龄、教育、收入等11个分类的对比信息指标,每个指标占用的圆周的角度相同,即任一指标的扇区角度为(360/11=32.723度)。
2)在“Gender”,“Income”,“Age”,“Education”四个指标中,又被分别划成几个不同的区段。
2、新冠肺炎全球疫情形势
案例1:facebook数据
直接使用上面facebook的数据,关注公众号AI入门学习回复【facebook】获取csv文件,用R语言画个示例,数据格式需要长格式,如下:
#facebooks数据 library(ggplot2) facebook = read.csv("facebook.csv",header=T,stringsAsFactors = FALSE) ggplot(facebook, aes(x = 类别1,y=比例,fill = 类别2)) + geom_bar(alpha = 0.93,stat="identity") + coord_polar()+ theme_bw()+ theme(panel.background = element_rect(fill = "black"))+ theme(axis.text = element_blank())+ theme(axis.ticks = element_blank())+# 去掉左上角的刻度线 theme(axis.title = element_blank())+ theme(legend.position = 'none')+# 去掉图例 theme(panel.border = element_blank())+# 去掉外层边框
theme(panel.background = element_rect(fill = "black"))+ #黑色背景 theme(panel.grid.major.x = element_line(colour =
"SpringGreen2", size = 0.3))+ #网格线设置 theme(panel.grid.major.y =
element_line(colour = "SpringGreen2", size = 0.3))+ #网格线设置 ylim(-0.3,1.1)+ scale_fill_discrete(c=1000, l=100) ggsave('rose.png',dpi = 1080)#保存为高清格式,dpi越大越清晰
图形如下,可以根据个人喜好对颜色进行切换,当然,各种标注,可以在PPT中完成,多个对比的,也可以在PPT中进行拼接。
用R自带数据集画一个不带网格线的
dsmall = diamonds[sample(nrow(diamonds),5000),] ggplot(dsmall, aes(x = clarity, fill = cut)) + geom_bar(alpha = 0.85) + coord_polar() + theme_bw() + theme(panel.background = element_rect(fill = "black"))+ theme(axis.text = element_blank())+ theme(axis.ticks = element_blank())+# 去掉左上角的刻度线 theme(axis.title = element_blank())+ theme(legend.position = 'none')+# 去掉图例 theme(panel.border = element_blank())+# 去掉外层边框
theme(panel.background = element_rect(fill = "black"))+ #黑色背景 theme(panel.grid=element_blank())+ ylim(-50,1000)+ scale_fill_manual(values = alpha(c("DarkOrchid1", "SpringGreen", "Magenta","Cyan","OrangeRed1"))) ggsave('rose.png',dpi = 1080)
案例2:多图组合
首先,介绍个函数,多个图组合到一起的
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { library(grid) plots <- c(list(...), plotlist) numPlots = length(plots) if (is.null(layout)) { layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), ncol = cols, nrow = ceiling(numPlots/cols)) } if (numPlots==1) { print(plots[[1]]) } else { grid.newpage() pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout)))) for (i in 1:numPlots) { matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, layout.pos.col = matchidx$col)) } } }
开始绘图部分,下六组数据替换分别跑一次,得到 p1,p2,p3,p4,p5,p6,然后用上面定义的函数组合即可
par(mar=c(0,0,0,0)) #c(4,3,8,2,2,1) #c(4,3,5,2,2,10) #c(15,3,5,8,2,8) #c(1,3,5,3,2,8)
#c(1,3,9,3,2,3) #c(2,12,9,3,2,3) data = data.frame(value= c(2,12,9,3,2,3), type = c('B','A','C','D','E',F)) p1 = ggplot(data, aes(x =type, y=value, fill=type)) + geom_bar(stat = "identity", alpha = 0.99) + coord_polar() + theme_bw() + theme(panel.background = element_rect(fill = "black"))+ theme(axis.text = element_blank())+ theme(axis.ticks = element_blank())+# 去掉左上角的刻度线 theme(axis.title = element_blank())+ theme(legend.position = 'none')+# 去掉图例 theme(panel.border = element_blank())+# 去掉外层边框 theme(panel.background =
element_rect(fill = "black"))+ #黑色背景 theme(panel.grid=element_blank())+ scale_fill_manual(values = alpha(c("OrangeRed1", 'gray91',"SpringGreen", "Magenta","Cyan", "DarkOrchid1"))) multiplot(p1,p2,p3,p4,p5,p6,cols=3)
结果如下:
重新替换一批数据得到下图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19