
公众号:AirPython
作者:星安果
最近一个小姐姐在后台给我留言,说自己的工作是短视频剪辑,经常需要熬夜剪片子,其中,音频处理费时费力,问我能不能利用自动化减轻她的工作
前面很多文章都使用了一款非常强大的依赖库,即:moviepy,它能非常快捷地完成视频剪辑
pydub 是一款简单、方便且强大的 Python 音频处理库
项目地址:https://github.com/jiaaro/pydub
日常音频剪辑处理工具,都可以使用它来完成,比如:提取音频、音频切断、音效处理、响度控制、声道配置、音频合成等
首先,安装依赖包
接下来,我们来聊聊 pydub 常见的操作
3-1 AudioSegment 对象
pudub 最重要的一个类是:AudioSegment
它是一个不可变的对象,代表一个音频段对象
首先,我们实例化一个 AudioSegment 对象,它内置有多种实现方式
比如,我们从本地加载一个 wav 的音频文件
3-2 裁剪某段音频
针对 AudioSegment 对象,使用中括号指定开始时间和结束时间,即可以快速提取某一段音频
PS:时间以毫秒为单位
3-3 合并音频
使用 pydub 合并多段音频非常便捷,只需要使用符号 +,将三段音频的 AudioSegment 对象加起来即可
3-4 音频常见属性
音频比较常见的属性包含:
对于音频的时长,有 2 种获取方式,即:
其他原始数据都可以从 AudioSegment 对象相应的属性中获取 :
3-5 单条音频淡入淡出
视频剪辑中,经常需要对音频做淡入淡出处理,使音效播放更加自然
比如:针对单个音频,在开头使用淡入,结束使用淡出,并指定淡入和淡出的时间
PS:单位以毫秒为单位
需要指出的是,AudioSegment 对象内置的 fade() 函数,可以更加灵活地实现淡入淡出效果
3-6 调整音频播放速度
视频剪辑中,音频速度的调整很常见
比如:在视频结尾,调整最后的画面帧为慢动作,同样需要同步调慢音频的播放速度
3-7 播放音频
AudioSegment 对象使用 pydub 内置的 play() 方法,可以播放音频,在调试代码的时候非常方便
3-8 音量增益及降低
要调整一段音频的音量,可以直接对 AudioSegment 实例加、减对应的分贝数目即可
3-9 交叉淡化效果
使用 append() 方法,可以将多段音频对象进行合并,并添加交叉淡化的效果
PS:使用 crossfade 参数指定交叉淡化的持续时间,单位为毫秒
3-10 多声道音频
利用 from_mono_audiosegments() 函数,可以一个轨道上创建多声道音频
3-11 提取音频及导出音频
在 3-1 中实例化 AudioSegment 方式,方法同样适用于视频,即:我们可以从视频中提取 AudioSegment 音频对象
使用 AudioSegment 对象的 export(filename,format) 方法,就可以将音频保存到本地了
对搞笑类短视频,经常会采用这种剪辑手法,即:将视频尾部,对最后一段对话降低速度并重新播放一次
准备一段视频素材,下面通过 pydub 来实现它
文中仅仅对 pydub 常用的操作进行了讲解,更多骚操作可以阅读官方文档去解锁
音视频的一些常见操作都可以做成自动化,让自己从重复的剪辑工作中抽离出来
如果你觉得文章还不错,请大家 点赞、分享、留言下,因为这将是我持续输出更多优质文章的最强动力!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08