京公网安备 11010802034615号
经营许可证编号:京B2-20210330
公众号:AirPython
作者:星安果
最近一个小姐姐在后台给我留言,说自己的工作是短视频剪辑,经常需要熬夜剪片子,其中,音频处理费时费力,问我能不能利用自动化减轻她的工作
前面很多文章都使用了一款非常强大的依赖库,即:moviepy,它能非常快捷地完成视频剪辑
pydub 是一款简单、方便且强大的 Python 音频处理库
项目地址:https://github.com/jiaaro/pydub
日常音频剪辑处理工具,都可以使用它来完成,比如:提取音频、音频切断、音效处理、响度控制、声道配置、音频合成等
首先,安装依赖包
接下来,我们来聊聊 pydub 常见的操作
3-1 AudioSegment 对象
pudub 最重要的一个类是:AudioSegment
它是一个不可变的对象,代表一个音频段对象
首先,我们实例化一个 AudioSegment 对象,它内置有多种实现方式
比如,我们从本地加载一个 wav 的音频文件
3-2 裁剪某段音频
针对 AudioSegment 对象,使用中括号指定开始时间和结束时间,即可以快速提取某一段音频
PS:时间以毫秒为单位
3-3 合并音频
使用 pydub 合并多段音频非常便捷,只需要使用符号 +,将三段音频的 AudioSegment 对象加起来即可
3-4 音频常见属性
音频比较常见的属性包含:
对于音频的时长,有 2 种获取方式,即:
其他原始数据都可以从 AudioSegment 对象相应的属性中获取 :
3-5 单条音频淡入淡出
视频剪辑中,经常需要对音频做淡入淡出处理,使音效播放更加自然
比如:针对单个音频,在开头使用淡入,结束使用淡出,并指定淡入和淡出的时间
PS:单位以毫秒为单位
需要指出的是,AudioSegment 对象内置的 fade() 函数,可以更加灵活地实现淡入淡出效果
3-6 调整音频播放速度
视频剪辑中,音频速度的调整很常见
比如:在视频结尾,调整最后的画面帧为慢动作,同样需要同步调慢音频的播放速度
3-7 播放音频
AudioSegment 对象使用 pydub 内置的 play() 方法,可以播放音频,在调试代码的时候非常方便
3-8 音量增益及降低
要调整一段音频的音量,可以直接对 AudioSegment 实例加、减对应的分贝数目即可
3-9 交叉淡化效果
使用 append() 方法,可以将多段音频对象进行合并,并添加交叉淡化的效果
PS:使用 crossfade 参数指定交叉淡化的持续时间,单位为毫秒
3-10 多声道音频
利用 from_mono_audiosegments() 函数,可以一个轨道上创建多声道音频
3-11 提取音频及导出音频
在 3-1 中实例化 AudioSegment 方式,方法同样适用于视频,即:我们可以从视频中提取 AudioSegment 音频对象
使用 AudioSegment 对象的 export(filename,format) 方法,就可以将音频保存到本地了
对搞笑类短视频,经常会采用这种剪辑手法,即:将视频尾部,对最后一段对话降低速度并重新播放一次
准备一段视频素材,下面通过 pydub 来实现它
文中仅仅对 pydub 常用的操作进行了讲解,更多骚操作可以阅读官方文档去解锁
音视频的一些常见操作都可以做成自动化,让自己从重复的剪辑工作中抽离出来
如果你觉得文章还不错,请大家 点赞、分享、留言下,因为这将是我持续输出更多优质文章的最强动力!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11