京公网安备 11010802034615号
经营许可证编号:京B2-20210330
相关媒体报道,中国外卖小哥近700万,从学历来看初中生最多,硕士及以上占比仅有1%。也就是说,有7万硕士干起了外卖工作,是不是有点吃惊。
另外,知乎上出现一个热门话题,大谈某互联网巨头公司的食堂洗碗工要求985硕士。虽然此消息已被鉴定为假的,但却在网上引起了很多人关注。
不仅硕士生就业难,压力大,面对如今满大街一抓一大把本科生的情况,同样面临着空前的就业压力。
某企业10个人面试,10个都本科生……当学历不再能成为你的优势,该如何增加自己的就业机会,从而提高就业率呢?
“高不成低不就”的尴尬
小西是枚普通高校硕士,虽然学习的专业不是最热门的,但总觉得找份工作应该不会太难。
没曾想,心仪的公司看不上自己,收到offer的公司不想去,怎么破?
小昊是某大学本科毕业生,没考研究生,也没有考公务员的打算,只想找一份喜爱的工作持续干下去。
与小西的遭遇一样,干了1年多的工作,把他的热情都磨光了,只剩下精疲力尽,动不动就想辞职……
而今年大四的莉莉,面对即将到来的毕业季,更是满腹惆怅,自己专业相关工作不喜欢,喜欢的工作却专业不对口,考虑要不要以读研为踏板换专业。
不知道你是否?也正在或曾经经历着这种“高不成、低不就”的困境。
面对找工作难的困境,专家给出了建议:求职者可适当培养自己的一技之长,来凸显自己的优势,从而获取更多就业的机会。
朋友小兰在一次面试时,虽然没得到那份工作,却邂逅了她十分情有独钟的一技之长。
多方求证后,小兰欣喜的发现,自己的看中的这个技能早已发展为新时代职场的标配技能,它就是如今已开启“野蛮生长”模式的朝阳行业所衍生出来的技能,即:数据分析。
近几年,互联网、金融、咨询、电信、零售、医疗、旅游等行业都迫切需要新型数据分析人才,因此,数据分析被誉为“最性感的技能”。
数据分析不仅是热门,而且能为从业者带来高薪,1-2年工作经验的数据分析师月薪平均可达13k+,且越老越值钱。
未来5年,中国大数据行业人才需求总量预计达2000万,虽各大高校开始纷纷新增相关专业,但仍无法填补,导致数据分析岗高薪却供不应求。
对数据分析人才迫切的市场需求,促使企业更注重数据分析岗从业者的实操能力而非学历,故而行业整体门槛并不苛刻,就业前景较好。
不过,正因缺少学历门槛约束,企业想找到合适且对口的数据分析人才,就不得不依靠行业内长期稳定而形成的高含金量证书。
所以,选择业内认可度高的认证证书,来认证自身的数据分析能力,成为你脱颖而出的筹码。
CDA(数据分析师认证),与CFA相似,由国际范围内数据科学领域行业专家、学者及知名企业共同制定并修订更新,迅速发展成行业内长期而稳定的全球大数据及数据分析人才标准,具有专业化、科学化、国际化、系统化等特性。
同时,CDA全栈考试布局和认证体系已得到教育部直属中国成人教育协会及大数据专业委员会认可,并由为IBM、华为等提供全球认证服务的Pearson VUE面向全球提供灵活的考试服务。
报名方式
登录CDA认证考试官网注册报名
https://www.cdaglobal.com/?source=tuyan
报名费用
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
考试地点
Level Ⅰ:中国区30+省市,70+城市,250+考场,考生可就近考场预约考试。
Level Ⅱ+Ⅲ:中国区30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州。
报考条件
业务数据分析师 CDA Level I
▷ 报考条件:无要求。
▷ 考试时间:随报随考。
建模分析师 CDA Level II
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅰ认证证书;
2、本科及以上学历,需从事数据分析相关工作1年以上;
3、本科以下学历,需从事数据分析相关工作2年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
大数据分析师 CDA Level II
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅰ认证证书;
2、本科及以上学历,需从事数据分析相关工作1年以上;
3、本科以下学历,需从事数据分析相关工作2年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
数据科学家 CDA Level III
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅱ认证证书;
2、本科及以上学历,需从事数据分析相关工作3年以上;
3、本科以下学历,需从事数据分析相关工作4年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16