作者:丁点helper
来源:丁点帮你
生存分析的上一篇文章主要通过一张表格介绍了计算生存率的方法,称作K-M法,也叫乘积极限法,简单来讲就是将生存概率相乘获得生存率。
生存曲线的估计方法(1):先看懂这个表,比如,前面我们讲过:
好比身高的样本均数,抽取的第一拨人计算的平均身高和第二拨人的平均身高是有差异的。
因为它们都是样本统计量,所以会随着样本的变化而变化。同样地,如果我们想象一下,把这些样本统计量放在一起再求平均数和标准差,那这次得到的这个标准差叫做什么呢?
还记得吗?叫标准误。
在学习均数抽样分布的时候,我们也重点谈过的。
因此,类似的,根据样本计算的生存函数,它也是一个样本统计量,它也可以被计算标准误。
理解了这一层,就应该能搞懂上一篇文章中最后一列出现的“生存率标准误”,如下表第(9)列。
这个“生存率标准误”的计算公式稍微有些复杂,我们可以不详细展开。重点是大家要意识到它所代表的含义:
如果单单由一个样本的生存率去代表总体,会存在误差(类比用一个城市的平均身高代表全国的平均身高),如何去衡量这个误差?由此我们就计算了标准误。
因此,如果搞懂了前面讲的样本均数的标准误等概念,这里就直接类比即可,可见基本的统计学理论和知识点需要重点掌握。
之所以要大费周章地搞懂“生存率的标准误”这个概念,是因为在实际应用中,我们可能经常会面临计算生存率95%置信区间的问题。
同样地,原理和均数95%置信区间几乎完全类似。对这个知识点不熟悉的同学可以阅读我们发的这篇文章。
只要搞懂了置信区间的大逻辑,相信对下面这个生存率的95%置信区间计算公式不会陌生:
因此,我们可以得出:手术后辅助化疗的肺癌患者,10个月生存率的95%置信区间为(0.2848,0.8580),或者写成百分数的形式(28.48%,85.80%)。
讲完生存率置信区间的算法,我们再来复习之前介绍过的一个概念——中位生存时间。
如下图,可以发现,当时间 t=11.124时,对应的生存率是0.5。这表示,当生存时间是11.124个月时,生存函数取值为0.5,从而意味着:
上图有一个专业的名字,叫K-M生存曲线(对应前文讲过的K-M乘积极限法):横轴是生存时间,纵轴是生存率。
从图中我们可以看出,K-M生存曲线呈阶梯性,随着生存时间的增加,曲线呈下降趋势,意味着时间越长,仍然存活的人数越少,生存率越低。如果曲线阶梯陡峭,表明下降速度快,往往生存期较短。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18