
作者:Baijayanta Roy
来源:towardsdatascience
编译&内容补充:早起Python
在用python进行机器学习或者日常的数据处理中,pandas是最常用的Python库之一,熟练掌握pandas是每一个数据科学家的必备技能,本文将用代码+图片详解Pandas中的四个实用函数!
shift()
假设我们有一组股票数据,需要对所有的行进行移动,或者获得前一天的股价,又或是计算最近三天的平均股价。
面对这样的需求我们可以选择自己写一个函数完成,但是使用pandas中的shift()可能是最好的选择,它可以将数据按照指定方式进行移动!
下面我们用代码进行演示,首先导入相关库并创建示例DataFrame
import pandas as pd import numpy as np df = pd.DataFrame({'DATE': [1, 2, 3, 4, 5], 'VOLUME': [100, 200, 300,400,500], 'PRICE': [214, 234, 253,272,291]})
现在,当我们执行df.shift(1,fill_value=0)即可将数据往下移动一行,并用0填充空值
现在,如果我们需要将前一天的股价作为新的列,则可以使用下面的代码
我们可以如下轻松地计算最近三天的平均股价,并创建一个新的列
向前移动数据也是很轻松的,使用-1即可
更多有关shift函数可以查阅官方文档,总之在涉及到数据移动时,你需要想到shift!
value_counts()
pandas中的value_counts()用于统计dataframe或series中不同数或字符串出现的次数,并可以通过降序或升序对结果对象进行排序,下图可以方便理解。
现在让我们用代码示例,首先是Index对象
下面是Series对象
同时可以对bin参数将结果划分为区间
更多的细节与参数设置,可以阅读pandas官方文档。
mask()
pandas中的mask方法比较冷门,和np.where比较类似,将对cond条件进行判断,如果cond为False,请保留原始值。如果为True,则用other中的相应值替换。
现在我们看下面的DataFrame,在这里我们要更改所有可以被二整除的元素的符号,就可以使用mask
下面是代码实现过程
nlargest()
在很多情况下,我们会遇到需要查找Series或DataFrame的前3名或后5名值的情况,例如,总得分最高的3名学生,或选举中获得的总票数的3名最低候选人
pandas中的nlargest()和nsmallest()是满足此类数据处理要求的最佳答案,下面就是从10个观测值中取最大的三个图解
下面是代码实现过程
但如果有相等的情况出现,那么可以使用first,last,all来进行保留
了解了nlargest()的使用方法后,nsmallest()就显得十分简单,本文就不再赘述,如果还有疑问可以查阅官方文档!
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30