京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:伍正祥
来源:AI入门学习
一、图形概述
平行坐标是一种通常的可视化方法, 用于对 高维几何多元数据的可视化。为了表示在高维空间的一个点集, 在N条平行的线的背景下,一个在高维空间的点被表示为一条拐点在N条平行坐标轴的折线,在第K个坐标轴上的位置就表示这个点在第K个维的值。
平行坐标是信息可视化的一种重要技术。 为了克服传统的笛卡尔直角坐标系容易耗尽空间、 难以表达三维以上数据的问题, 平行坐标将高维数据的各个变量用一系列相互平行的坐标轴表示, 变量值对应轴上位置。 为了反映变化趋势和各个变量间相互关系,往往将描述不同变量的各点连接成折线。所以平行坐标图的实质是将 维欧式空间的一个点Xi(xi1,xi2,...,xim) 映射到 维平面上的一条曲线。
平行坐标图可以表示超高维数据。 平行坐标的一个显著优点是其具有良好的数学基础, 其射影几何解释和对偶特性使它很适合用于可视化数据分析。下面我们看看具体的应用案例。
二、案例学习
Millward Brown每年都会总结全球范围内最具价值的品牌,Valerio Pellegrini根据2010至2015年的前100位品牌的排名变化,下图是利用平行坐标图进行可视化的结果,从图中可以看出来,谷歌、IBM、苹果、微软的排名都比较稳定,变动不大,而处于中下的公司,每年的排名波动则比较大,并且每年都有新进品牌。非常清晰的实现了多样本、多维度的对比分析。
100 MOST VALUABLE BRANDS 2010-15
下面的平行坐标图也是对1990至2013年,全球移民目的地和来源地的排名进行了可视化。
《全球移民路线图:美国为移民首选目的地》网易数读
下面的图,表达了1978年—2017年,大陆各省人均GDP的名次变化,图中包含的信息量非常大。
1)40年来,北京、上海、天津一直占据top 3,只不过换了个位置
2)天津一度占据榜首
3)黑龙江和甘肃高开低走,就像瀑布一样一泻千里
4)福建低开高走,上升迅猛,都说福建人会做生意,此数据显示,不假
5)贵州打开跌停板,近几年摆脱垫底,估计是贵阳发展大数据的原因
6)海南冲高回落,几乎又回到了原点
还包含了更多的信息,比如每个大BOSS任期内,是否存在重大扶持的省份等……
下图是1978年—2017年,大陆各省总体GDP的名次变化,同样包含特别多的信息,大家可以分析下。
(1978-2017年全国各省区GDP排名,不含香港、澳门、台湾,数据来源国家统计局及各省统计年鉴,制图@张靖/星球研究所)
在平行坐标图中,每个变量都有自己的轴线,所有轴线彼此平行放置,各自可有不同的刻度和测量单位,一系列的直线穿越所有轴线来表示不同数值。
另外,虽然轴线排列没有固定的顺序,但是因为相邻变量会比非相邻的变量更容易进行比较,所以轴线排列的顺序可能会影响读者理解数据。
在平行坐标图里,各轴的单位一般是不相同的,所以不能进行跨轴的数据比较。但是在上文提到的关于不同年份的排名时,由于是对相同变量的可视化,所以可以进行跨轴比较。因而,在读图时,我们要注意各轴的测量单位。
三、绘图指南
1、R语言绘图
说实话,R语言的这个包绘图比较丑,大家有没有更好的包推荐,上面的案例,基本上都有组合P图的痕迹,直接画的软件还没发现比较好的。
#安装与加载包
#install.packages('lattice')
library(lattice)
data(iris)
parallelplot(
~ iris[1:4],
data = iris,
groups = Species,
horizontal.axis = FALSE,#是否要垂直展示
scales = list(x = list(rot = 90))
)
2、线上Echarts绘图
网址链接:http://echarts.baidu.com/examples/
改变图中的代码,即可完成想要的图
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04