京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
上篇文章利用泰坦尼克号沉船事件中乘客的存活情况介绍了描述性数据分析,计算了不同舱位乘客的幸存率,今天我们来看看如何用图像来直观表达。
我们先来简单复习一下titanic.csv的内容。
# 导入数据
titanic <- read.csv("//Users//Desktop//titanic.csv",header = TRUE)
names(titanic) # 查看titanic中的变量名
head(titanic) # 查看titanic前6行
上篇文章计算的不同舱位乘客的死亡与幸存人数如下:
table(titanic$survived,titanic$pclass)
1st 2nd 3rd
died 123 158 528
survived 200 119 181
不同舱位生存率:
survpct=paste(round(tab1[2, ]/apply(tab1,2,sum)*100,2),"%",sep="") survpct [1] "61.92%" "42.96%" "25.53%"
如果我们想直观地描述不同舱位乘客的幸存率,可以用下面的做法:
绘制柱状图
barplot(table(titanic$survived,titanic$pclass))
barplot()是绘制柱状图的函数,该函数括号中的命令为绘图所需的数据,就是前面我们计算过的不同舱位死亡及幸存者人数。
柱状图的颜色也可调整,下面的代码中,col是更改柱状图颜色的命令:
barplot(table(titanic$survived,titanic$pclass),
col=c("yellow","dark blue"))
每个舱位死亡与幸存人数柱子的排列方式也可调整,beside为改变柱状图排列方式的命令;beside=T意为两个柱子并排,beside=F意为两个柱子上下叠放。
barplot(table(titanic$survived,titanic$pclass),
col=c("yellow","dark blue"), beside=T)
至此,我们已经可以将数字转变为直观的图像了,但是黄色和蓝色的柱子分别代表幸存者还是死亡者呢?此外,图像的标题等重要信息也未标示出来,图像的可读性还需要通过下面的步骤来提升:
设置图例、标题、坐标轴标签等
做法比较简单,在上面代码的基础上,增加一些命令即可:
barplot(table(titanic$survived,titanic$pclass),
col=c("yellow","dark blue"),
beside=T, legend=T, args.legend=list(x="topleft"),
main="Survival (Pct) by Passenger Class",
xlab="Class",ylab="Count",
ylim=c(0,600))
legend为设置图例的命令;args.legend为设置图例位置的命令;
main为设置图标题的命令;
xlab、ylab分别为设置x轴和y轴名称的命令;
ylim为设置y轴范围的命令。
从这个图像可以清晰地看出,一等舱的幸存者人数为三个舱位中最多的,而三等舱的死亡者人数远高于其他两个舱位。但是这个图像还缺少一个信息,就是各舱位的存活率,我们可以在每个舱位的柱子上面标记一下:
text(c(2,5,8),c(250,250,570),survpct, cex=1.2)
text()为给图片中增加文字的函数。
其中前两个命令为文字的位置信息,第一个命令为文字设置x轴方向的位置信息,c(2,5,8)表示将文字分别放置在x取值为2,5,8处。
第二个命令为文字增加y轴方向的位置信息,c(250,250,570)表示将其分别放置在y取值为250,250,570处。
第三个命令为文字的具体内容,survpct是之前程序的运行结果,为一、二、三等舱乘客的幸存率。
第四个命令cex为文字字号,默认值为1,此处设置为1.2,意为比默认字号大20%。
以上代码默认标题、x轴、y轴的文字均为英文,但有时我们也需要将其设置为中文,此时只需在上面这段代码中增加一个『字体 (family)』命令:将图片中的文字设置成中文。
barplot(table(titanic$survived,titanic$pclass), col=c("red","blue"),
beside=T, legend=T, args.legend=list(x="topleft"),
main="不同舱位乘客幸存数(率)", xlab="舱位",ylab="人数",family = "SimHei",
ylim=c(0,600))
family命令需要赋值字体的英文名称,本文将字体设置为"SimHei",即黑体。
此处还可设置其他字体,以下链接中总结了常见中文字体的英文名,大家可根据自己的需要选择。
部分字体中英文名称,资料来源于下面的链接
http://guangzheng.name/2017/12/18/%E5%A6%82%E4%BD%95%E8%B0%83%E6%95%B4R%E8%AF%AD%E8%A8%80%E7%BB%98%E5%9B%BE%E7%9A%84%E5%AD%97%E4%BD%93/
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01