
作者:丁点helper
来源:丁点帮你
上篇文章利用泰坦尼克号沉船事件中乘客的存活情况介绍了描述性数据分析,计算了不同舱位乘客的幸存率,今天我们来看看如何用图像来直观表达。
我们先来简单复习一下titanic.csv的内容。
# 导入数据 titanic <- read.csv("//Users//Desktop//titanic.csv",header = TRUE) names(titanic) # 查看titanic中的变量名 head(titanic) # 查看titanic前6行
上篇文章计算的不同舱位乘客的死亡与幸存人数如下:
table(titanic$survived,titanic$pclass) 1st 2nd 3rd died 123 158 528 survived 200 119 181
不同舱位生存率:
survpct=paste(round(tab1[2, ]/apply(tab1,2,sum)*100,2),"%",sep="") survpct [1] "61.92%" "42.96%" "25.53%"
如果我们想直观地描述不同舱位乘客的幸存率,可以用下面的做法:
绘制柱状图
barplot(table(titanic$survived,titanic$pclass))
barplot()是绘制柱状图的函数,该函数括号中的命令为绘图所需的数据,就是前面我们计算过的不同舱位死亡及幸存者人数。
柱状图的颜色也可调整,下面的代码中,col是更改柱状图颜色的命令:
barplot(table(titanic$survived,titanic$pclass), col=c("yellow","dark blue"))
每个舱位死亡与幸存人数柱子的排列方式也可调整,beside为改变柱状图排列方式的命令;beside=T意为两个柱子并排,beside=F意为两个柱子上下叠放。
barplot(table(titanic$survived,titanic$pclass), col=c("yellow","dark blue"), beside=T)
至此,我们已经可以将数字转变为直观的图像了,但是黄色和蓝色的柱子分别代表幸存者还是死亡者呢?此外,图像的标题等重要信息也未标示出来,图像的可读性还需要通过下面的步骤来提升:
设置图例、标题、坐标轴标签等
做法比较简单,在上面代码的基础上,增加一些命令即可:
barplot(table(titanic$survived,titanic$pclass), col=c("yellow","dark blue"), beside=T, legend=T, args.legend=list(x="topleft"), main="Survival (Pct) by Passenger Class", xlab="Class",ylab="Count", ylim=c(0,600))
legend为设置图例的命令;args.legend为设置图例位置的命令;
main为设置图标题的命令;
xlab、ylab分别为设置x轴和y轴名称的命令;
ylim为设置y轴范围的命令。
从这个图像可以清晰地看出,一等舱的幸存者人数为三个舱位中最多的,而三等舱的死亡者人数远高于其他两个舱位。但是这个图像还缺少一个信息,就是各舱位的存活率,我们可以在每个舱位的柱子上面标记一下:
text(c(2,5,8),c(250,250,570),survpct, cex=1.2)
text()为给图片中增加文字的函数。
其中前两个命令为文字的位置信息,第一个命令为文字设置x轴方向的位置信息,c(2,5,8)表示将文字分别放置在x取值为2,5,8处。
第二个命令为文字增加y轴方向的位置信息,c(250,250,570)表示将其分别放置在y取值为250,250,570处。
第三个命令为文字的具体内容,survpct是之前程序的运行结果,为一、二、三等舱乘客的幸存率。
第四个命令cex为文字字号,默认值为1,此处设置为1.2,意为比默认字号大20%。
以上代码默认标题、x轴、y轴的文字均为英文,但有时我们也需要将其设置为中文,此时只需在上面这段代码中增加一个『字体 (family)』命令:将图片中的文字设置成中文。
barplot(table(titanic$survived,titanic$pclass), col=c("red","blue"), beside=T, legend=T, args.legend=list(x="topleft"), main="不同舱位乘客幸存数(率)", xlab="舱位",ylab="人数",family = "SimHei", ylim=c(0,600))
family命令需要赋值字体的英文名称,本文将字体设置为"SimHei",即黑体。
此处还可设置其他字体,以下链接中总结了常见中文字体的英文名,大家可根据自己的需要选择。
部分字体中英文名称,资料来源于下面的链接
http://guangzheng.name/2017/12/18/%E5%A6%82%E4%BD%95%E8%B0%83%E6%95%B4R%E8%AF%AD%E8%A8%80%E7%BB%98%E5%9B%BE%E7%9A%84%E5%AD%97%E4%BD%93/
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26