
作者:丁点helper
来源:丁点帮你
上篇文章利用泰坦尼克号沉船事件中乘客的存活情况介绍了描述性数据分析,计算了不同舱位乘客的幸存率,今天我们来看看如何用图像来直观表达。
我们先来简单复习一下titanic.csv的内容。
# 导入数据 titanic <- read.csv("//Users//Desktop//titanic.csv",header = TRUE) names(titanic) # 查看titanic中的变量名 head(titanic) # 查看titanic前6行
上篇文章计算的不同舱位乘客的死亡与幸存人数如下:
table(titanic$survived,titanic$pclass) 1st 2nd 3rd died 123 158 528 survived 200 119 181
不同舱位生存率:
survpct=paste(round(tab1[2, ]/apply(tab1,2,sum)*100,2),"%",sep="") survpct [1] "61.92%" "42.96%" "25.53%"
如果我们想直观地描述不同舱位乘客的幸存率,可以用下面的做法:
绘制柱状图
barplot(table(titanic$survived,titanic$pclass))
barplot()是绘制柱状图的函数,该函数括号中的命令为绘图所需的数据,就是前面我们计算过的不同舱位死亡及幸存者人数。
柱状图的颜色也可调整,下面的代码中,col是更改柱状图颜色的命令:
barplot(table(titanic$survived,titanic$pclass), col=c("yellow","dark blue"))
每个舱位死亡与幸存人数柱子的排列方式也可调整,beside为改变柱状图排列方式的命令;beside=T意为两个柱子并排,beside=F意为两个柱子上下叠放。
barplot(table(titanic$survived,titanic$pclass), col=c("yellow","dark blue"), beside=T)
至此,我们已经可以将数字转变为直观的图像了,但是黄色和蓝色的柱子分别代表幸存者还是死亡者呢?此外,图像的标题等重要信息也未标示出来,图像的可读性还需要通过下面的步骤来提升:
设置图例、标题、坐标轴标签等
做法比较简单,在上面代码的基础上,增加一些命令即可:
barplot(table(titanic$survived,titanic$pclass), col=c("yellow","dark blue"), beside=T, legend=T, args.legend=list(x="topleft"), main="Survival (Pct) by Passenger Class", xlab="Class",ylab="Count", ylim=c(0,600))
legend为设置图例的命令;args.legend为设置图例位置的命令;
main为设置图标题的命令;
xlab、ylab分别为设置x轴和y轴名称的命令;
ylim为设置y轴范围的命令。
从这个图像可以清晰地看出,一等舱的幸存者人数为三个舱位中最多的,而三等舱的死亡者人数远高于其他两个舱位。但是这个图像还缺少一个信息,就是各舱位的存活率,我们可以在每个舱位的柱子上面标记一下:
text(c(2,5,8),c(250,250,570),survpct, cex=1.2)
text()为给图片中增加文字的函数。
其中前两个命令为文字的位置信息,第一个命令为文字设置x轴方向的位置信息,c(2,5,8)表示将文字分别放置在x取值为2,5,8处。
第二个命令为文字增加y轴方向的位置信息,c(250,250,570)表示将其分别放置在y取值为250,250,570处。
第三个命令为文字的具体内容,survpct是之前程序的运行结果,为一、二、三等舱乘客的幸存率。
第四个命令cex为文字字号,默认值为1,此处设置为1.2,意为比默认字号大20%。
以上代码默认标题、x轴、y轴的文字均为英文,但有时我们也需要将其设置为中文,此时只需在上面这段代码中增加一个『字体 (family)』命令:将图片中的文字设置成中文。
barplot(table(titanic$survived,titanic$pclass), col=c("red","blue"), beside=T, legend=T, args.legend=list(x="topleft"), main="不同舱位乘客幸存数(率)", xlab="舱位",ylab="人数",family = "SimHei", ylim=c(0,600))
family命令需要赋值字体的英文名称,本文将字体设置为"SimHei",即黑体。
此处还可设置其他字体,以下链接中总结了常见中文字体的英文名,大家可根据自己的需要选择。
部分字体中英文名称,资料来源于下面的链接
http://guangzheng.name/2017/12/18/%E5%A6%82%E4%BD%95%E8%B0%83%E6%95%B4R%E8%AF%AD%E8%A8%80%E7%BB%98%E5%9B%BE%E7%9A%84%E5%AD%97%E4%BD%93/
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26