京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:伍正祥
来源:AI入门学习
今天教大家画一个图,桑基图,一个大大提高你的江湖地位的图。桑基图是一种流图,其实在前期文章中提到过,但是并没有讲细节的画法,现在教大家两种画法,一个是R语言(案例1、2、3),一个是直接在线画(案例4)。
案例1:你的工资是怎么霍霍的?
假如你月薪20000,你能拿到多少?最后花完还剩多少?可能比你想象的要少。一部分被国家拿走,当然国家并不是要你的钱,只是帮你存起来,等你长大了,不对,是老了会还给你的(此处我想起了压岁钱的故事),当然税收部分,那国家说了,强制征收,打死都不会给你的。国家的拿完了,然后扣除柴米油盐酱醋茶等一些列开支,你会发现,又回到了穷人的队伍。
以杭州为例,根据工资计算器,五险一金+所得税大约扣6000多,你能拿到13000多,为什么扣这么多,因为杭州公积金12%,所以欢迎大家来杭州发展。除掉五险一金,就是各项生活开支了,最后剩下不足4000了。说了这么多,数据怎么表达更直观,大部分网站都用二维饼图,在分类很多的情况下,饼图比较乱,其实桑基图会有更好的表现力,看具体的绘图步骤。
step1:数据准备,理清各类数据金额或者比例
step2:数据格式转换,宽格式的转换成3列,注意会汇总多一行或者多行
step3:可以把数字标签加到文本描述里面,准备好后,套用文末代码即可
工资是怎么样离你而去的
案例2:比赛数据样本量统计
比赛分为初赛和复赛,初赛复赛分别有训练集和测试集,在训练集中,有5个分类,存在各种交叉,用桑基图如下。
比赛数据样本量统计
案例3:手机各个渠道销售量统计
手机品牌商会在不同的渠道进行销售,不同渠道又会在不同的省份进行销售,用其他类型的图表表达都显得拥挤,但是桑基图恰到好处的表现出来了,可以在标签上加上各个渠道的占比。
某品牌手机各个渠道销售量统计
案例4:在线用Echart绘制桑基图
绘图思路及数据准备和上面一样,只要手动更改标签及数据,运行即可得到想要的图形,下面是原始的demo截图,非常简单。
案例5:其他作品欣赏(需要一些开发资源)
开头图代码:
URL <-'https://raw.githubusercontent.com/christophergandrud/d3Network/sankey/JSONdata/energy.json'
Energy <- jsonlite::fromJSON(URL)
sankeyNetwork(Links = Energy$links, Nodes = Energy$nodes, Source = "source", Target = "target", Value = "value",NodeID = "name",fontSize = 12, nodeWidth = 30)
案例123代码,只需要更换文件即可
library(networkD3)#安装并包加载,如果没有请安装
library(dplyr)
setwd("C:/Users/wuzhengxiang/Desktop/R语言可视化/Sankey")#文件的存储空间
sankey = read.csv("手机销售渠道统计.csv",header=T,stringsAsFactors = FALSE)#读取数据
Sankeynodes = data.frame(name = unique(c(sankey$Source,sankey$Target)))
Sankeynodes$index = 0:(nrow(Sankeynodes)-1)
Sankeylinks = sankey
Sankeylinks = left_join(Sankeylinks,Sankeynodes,by=c('Source'='name'))
Sankeylinks = left_join(Sankeylinks,Sankeynodes,by=c('Target'='name'))
Sankeydata = Sankeylinks[,c(4,5,3)]
names(Sankeydata) = c("Source","Target","Value")
Sankeyname = select(Sankeynodes,name)
sankeyNetwork(Links = Sankeydata,Nodes = Sankeyname, Source = "Source",Target = "Target", Value = "Value", NodeID = "name", units = "元", #根据具体单位填写, fontSize = 12, nodeWidth = 24,sinksRight = FALSE, colourScale = JS("d3.scaleOrdinal(d3.schemeCategory20);"))
图片中使用了大量的动图,有专门的小软件可以制作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04