
国庆长假出游热即将来临之际,中国文化和旅游部发布新规,10月1日起,在线旅游经营者不得滥用大数据分析等技术手段,侵犯旅游者合法权益。
一直困恼国内消费者的“大数据杀熟”事件,终于迎来曙光,虽然该规定目前只适用在旅游行业中,但却是一个很好的开头。
“大数据杀熟”究竟是啥
2018年天猫、京东等平台被指责有“大数据杀熟”嫌疑,即:同样的商品或服务,老客户看到的价格反而比新客户要贵出许多。
随着大数据分析技术蓬勃发展,经营者运用已有的大量数据,如:消费偏好、频率、习惯、收入等,分析客户购买力、对商品或服务需求的程度……
依据分析结果,将同一商品或服务以不同价格卖给不同的消费者,从而获得更大的利益。
互联网“大数据杀熟”起源
互联网“大数据杀熟”鼻祖是亚马逊,2000年,亚马逊启动了著名的差别定价实验,将部分DVD碟片对新顾客报价22.74美元,而对感兴趣的老顾客报价26.24美元。
这种销售方式产生了极佳的效果,但后来被老顾客发现,最终以亚马逊赔钱并道歉告终。
“大数据杀熟”常见形式
▷ 根据用户使用设备不同而差别定价,如:苹果与安卓用户定价不同;
▷ 根据用户消费场所不同而差别定价,如:给距离商场远的用户定价更高;
▷ 根据用户消费频率不同而差别定价,如:给消费频率高的用户定价更高。
怎样避开“大数据杀熟”
▶ 网购时,偶尔换新账号,查看价格变化情况;
▶ 货比三家,提防商户隐藏信息,多了解商品;
▶ 切勿轻易被商户锁定、被套牢。
“大数据杀熟”后话
——给卖家的话
大数据分析是为给消费者提供更好的服务,差异化定价应遵守底线,保证用户的知情权,以防危机品牌的名誉,造成忠实用户的流失。
——给买家的话
没有人能避开大数据,根据消费习惯、喜好等,在线平台会给每位消费者贴上千个标签。
不想被大数据“套牢”,就要“知己知彼”,我们要跟上大数据时代的步伐,就一定要注意培养自己的大数据分析思维。
CDA明星导师李奇老师表示,大数据分析是连接数据与人类认知之间的桥梁。
大数据分析是什么?
百度百科的定义,大数据分析,是为了提取有用信息和形成结论,而对数据加以详细研究和概括总结的过程。
简而言之,就是将数据(包括文本、音乐、文字、数字等)转化为知识、智慧的方法,如:朱朝阳日记中的内容也是数据。
拥有数据分析思维的人,想不发光发亮都很难。因此,随着大数据时代到来,以这种思维为基础形成了一个朝阳产业,倍受社会各界人士的青睐。
现今,各大企业对数据分析能力过硬的人才,需求量也越来越大,供不应求的市场导向,让这个新风口行业的从业者薪资普遍偏高。
给大家举个栗子
假如你是运营良好的淘宝服装店店长,你会及时掌握一天卖多少件商品、挣多少钱、哪个品牌卖的多、哪个品牌卖的少、哪种商品需补货、哪种颜色受欢迎等信息,以便做策略调整,保持竞争优势。
这就是了解情况。
积累一定数据后,你会发现一些规律,如:人群甲喜欢买圆领深色服装,而人群乙喜欢买宽松浅色服装,有人买A品牌后会购买B品牌短裤,有人浏览C页面后会对D品牌产生兴趣。
这就是数据挖掘。
于是,你将圆领深色服装推销给甲,将宽松浅色服装推销给乙,将B品牌短裤购买链接添加在A品牌购买页中,将D品牌促销优惠加到C页面,一番操作后商品销售量大幅提升。
这就是发现规律。
观察一段时间,你发现E品牌被浏览2-3次就能售出一件,于是你想办法增加E品牌点击次数,通过浏览量趋势来大致预测未来一段时间内销量的变化情况。
这就是预测将来。
大数据分析要具备啥能力?
如果你想进入大数据分析行业,成为该领域的佼佼者,下面这几块是优化方向,供大家参考!
▼
基础知识
与朱朝阳还没有完全成型的思维相比,数据分析师在数学知识的基础上,引入了统计学,其基础知识包含数学、线性代数、统计学等,这些也是决定数据分析职业发展高度的基石。
对于初级数据分析师,学习描述统计相关的内容和公式即可,但要更进一步就需掌握统计算法,甚至机器学习算法等更多知识,对于算法相关的工作,则要对高数进行深入学习。
▼
分析工具
Excel运用最广,是最容易入门的数据分析工具之一,函数、数据透视表和公式必须熟练掌握。
另外,具备一个专业统计分析技能更好,SPSS作为入门是极好滴。不过随着数据的增长,编程语言的学习,如Python等将会使数据处理变得更高效。
当然,只要和数据打交道,我们就会接触到数据库,所以要学SQL(数据库),掌握基本的增、删、改、查等技能。
最后,可以学写主流的利器,如Python或R,有些行业可能会用到SAS或其他工具,请依据自己的行业选择。
▼
业务/行业/商业知识
为摆脱嫌疑朱朝阳对数据进行清洗,数学家为解决难题收集数据……种种迹象能看出,脱离业务的纯数据分析没有任何意义,没行业背景的技术如空中楼阁。
别走进死胡同,想成为优秀的数据分析师或培养自己的数据分析思维, 首先要对业务了如指掌。
熟悉业务后再去获取需要的数据,对数据进行业务分析,制定出相应方案,这才是王道。
▼
沟通能力
数据分析会涉及到很多和业务部门、技术部门的沟通,做出报告后也需要进行展示,并说服别人接受自己的结果。
因此,协调沟通能力对于数据分析者而言,也是非常重要的素质之一。
▼
学习力
无论是数据分析,还是其他岗位,都需要有持续、快速学习的能力,学业务逻辑、行业知识、技术工具、分析框架……
END
大数据技术的出现,是为更好的服务于大众,而非欺骗忠实顾客,谋取高额利益的手段。建议消费者跟上时代的脚步,多了解大数据,培养大数据思维,从而明白如何维护自己的权益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08