
虎嗅曾经有一篇叫做《体育解说员已死》的文章,主要的观点是说伴随“大数据”出现的一系列新产品、新技术,打破了体育解说员和观众之间的信息壁垒,此时如果解说员再没有自己独特的东西,那么“关了声音看比赛”的观众会越来越多,解说员们就面临下岗的局面。
以“大数据”为代表的新技术对体育直播的冲击,虽然现在来看威胁到体育解说员的角色,但是对这个行业的来说却是锦上添花。
首先还是要从体育观赏方式的变化说起:移动端,就拿本次巴西世界杯来说,调查显示有 30% 的球迷使用智能手机或平板电脑观看比赛,另有 30% 的观众使用电视机收看比赛。
移动端的崛起,将赛事欣赏从“单屏”直接变成了“多屏”。奥美体育营销总监强炜在“英特尔体育行业与大数据应用”会议上分享了自己使用 APP 欣赏赛事的经历:
我手机里面的 APP 不仅有集锦、回放等等,而且跟我的工作有直接关系,跟我的个人爱好可以随时发生关联。我飞去巴西看球的经历是很痛苦的行程,24小时的飞机,离比赛时间还 有三小时,因为机场不能来接,我要在这个时间内到酒店去取票,然后再去场地,看完比赛以后当天晚上住下来,所以这个过程很痛苦,大部分的时间在飞机上。
我看互联网的科技已经可以让我们把世界上最好的比赛随时随地去看,这一点应该是互联网科技和大数据给我们渗透生活当中的各个表现。实际上这种视频网站以及移 动终端已经把这个信息全面的推给到我们的用户。昨天我看到一个新闻是优酷和乐视在第一轮比赛之前的整个用户量都已经过亿,所以尽管由于时差的原因,很多人 尽管也选择在家里看比赛,但是互联网的应用是全面的渗入到我们的体育生活当中。
通常来说,移动端设备 APP 应用的计算主要发生在前端,比如消息、微博、阅读、办公等等,对于后端的计算能力虽然也有一定要求,但是计算量往往比较小或者与服务器的通讯是间歇性的。 体育直播则不同,数据计算体量大:视频是数字格式当中体积最大的,客户端的计算请求数量异常之高——因为观赛人数规模实在太庞大。就拿上届世界杯来说,权 威机构尼尔森(Nielsen)发布的数据显示,有超过 1.11亿美国观众观看了2010 年的足坛盛事。本届世界杯更甚,美国与加纳的小组赛首轮比赛仅英文电视转播就吸引了 1109.3 万观众,创下了 ESPN 单场男子足球比赛观众人数最多、收视率最高的纪录,这还不算西班牙语电视转播的观众。
上届世界杯 ESPN 派出了庞大的转播队伍,使用了全套顶尖的英特尔计算设备,包括笔记本电脑、服务器、网络和图形设备全方位助力网络和电视转播。ESPN公司负责人将其描绘为该电视网有史以来最为恢宏的节目转播活动。ESPN负责网络、支持与安全服务的副总裁 Dan Robertson 就曾表示:“那是我们所做过的最大的远程直播节目。”
美国这样以“橄榄球、棒球和篮球”为三大球类运动的国度都在热衷于足球。足球运动在中国长久不衰落,观赛球迷数量和美国相比只多不少,大概都可以用亿计都说不定。ESPN 是美国球迷首选的观赛平台,优酷土豆和新浪则是中国球迷网民的看球首选。优酷土豆和新浪的转播队伍很可能要服务比 ESPN 更庞大的观众群——中国球迷。中国新闻网的消息指出,世界杯期间优酷播放量已经破亿,另一家视频网站乐视公布数据,该网站日均覆盖用户数超过4500万,日均播放时长超过3500小时,日均播放次数超过2亿次。可见,互联网应用已经全面渗入到我们的体育生活当中。值得一提的是,优酷土豆、新浪和 ESPN 一样,这三家公司都采用了英特尔的产品作后端支持系统,提供稳定、可靠的直播服务。
观众人数的增大不仅带来了直播的压力,服务这部分群体的其他互联网和内容产品同样面临巨大的后端计算压力,比如网站的评论系统、论坛区。某一段精彩进球视频的播放次数可能会超过一场比赛的次数(因为会有人重复观看),并且球迷在评论中彼此互动,又进一步加大了网站的后台负担。所有这些挑战,如果没有足够强劲的计算能力支持,是没有办法实现的。
“多屏”普及也为体育直播的创新创造了条件,虽然平板设备能做的事情有限,且无法实现沉浸式体验(屏幕尺寸和解析度无法和主流高清电视相比),但是平板设备上丰富的 APP 资源和数据运算能力,使其能够与电视画面相配合,实现联动、互补。比如电视画面上是比赛实况,观众可能会在平板设备的“小屏”上刷微博,发表观点,也可能在上球迷论坛,与此时此刻同样在看球的其他人一起讨论。数据显示,美国地区有 85% 的平板用户在看电视的时候会使用他们的设备,多屏设备的使用体验从主动(self-initiated)变成了一种程序(programmed experience)。这种与体育直播画面的联动和互补,体现了“大数据”的优势:预测分析,尤其是挖掘出直播画面当中被忽略的成分。比如美国职业棒球联盟(MLB)采用英特尔的服务器系统实现了比赛直播中“大据”分析结果与直播画面的叠加如图,仅仅从直播画面中,无法判断两名外野手距离落点究竟有多远,反应速度、奔跑距离和加速度的详细数据。
回到本文开头,虽然体育解说员的角色被弱化,但是纵观体育直播来看,实际上依靠科技的力量被进化到一个新的程度。这种进化的推进力量,其实是英特尔这样的 IT 巨头为行业带来的强大计算能力。“大数据”技术与体育行业相渗透、结合所实现的一切,与体育运动的精神一样,是更快、更强。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28