
虎嗅曾经有一篇叫做《体育解说员已死》的文章,主要的观点是说伴随“大数据”出现的一系列新产品、新技术,打破了体育解说员和观众之间的信息壁垒,此时如果解说员再没有自己独特的东西,那么“关了声音看比赛”的观众会越来越多,解说员们就面临下岗的局面。
以“大数据”为代表的新技术对体育直播的冲击,虽然现在来看威胁到体育解说员的角色,但是对这个行业的来说却是锦上添花。
首先还是要从体育观赏方式的变化说起:移动端,就拿本次巴西世界杯来说,调查显示有 30% 的球迷使用智能手机或平板电脑观看比赛,另有 30% 的观众使用电视机收看比赛。
移动端的崛起,将赛事欣赏从“单屏”直接变成了“多屏”。奥美体育营销总监强炜在“英特尔体育行业与大数据应用”会议上分享了自己使用 APP 欣赏赛事的经历:
我手机里面的 APP 不仅有集锦、回放等等,而且跟我的工作有直接关系,跟我的个人爱好可以随时发生关联。我飞去巴西看球的经历是很痛苦的行程,24小时的飞机,离比赛时间还 有三小时,因为机场不能来接,我要在这个时间内到酒店去取票,然后再去场地,看完比赛以后当天晚上住下来,所以这个过程很痛苦,大部分的时间在飞机上。
我看互联网的科技已经可以让我们把世界上最好的比赛随时随地去看,这一点应该是互联网科技和大数据给我们渗透生活当中的各个表现。实际上这种视频网站以及移 动终端已经把这个信息全面的推给到我们的用户。昨天我看到一个新闻是优酷和乐视在第一轮比赛之前的整个用户量都已经过亿,所以尽管由于时差的原因,很多人 尽管也选择在家里看比赛,但是互联网的应用是全面的渗入到我们的体育生活当中。
通常来说,移动端设备 APP 应用的计算主要发生在前端,比如消息、微博、阅读、办公等等,对于后端的计算能力虽然也有一定要求,但是计算量往往比较小或者与服务器的通讯是间歇性的。 体育直播则不同,数据计算体量大:视频是数字格式当中体积最大的,客户端的计算请求数量异常之高——因为观赛人数规模实在太庞大。就拿上届世界杯来说,权 威机构尼尔森(Nielsen)发布的数据显示,有超过 1.11亿美国观众观看了2010 年的足坛盛事。本届世界杯更甚,美国与加纳的小组赛首轮比赛仅英文电视转播就吸引了 1109.3 万观众,创下了 ESPN 单场男子足球比赛观众人数最多、收视率最高的纪录,这还不算西班牙语电视转播的观众。
上届世界杯 ESPN 派出了庞大的转播队伍,使用了全套顶尖的英特尔计算设备,包括笔记本电脑、服务器、网络和图形设备全方位助力网络和电视转播。ESPN公司负责人将其描绘为该电视网有史以来最为恢宏的节目转播活动。ESPN负责网络、支持与安全服务的副总裁 Dan Robertson 就曾表示:“那是我们所做过的最大的远程直播节目。”
美国这样以“橄榄球、棒球和篮球”为三大球类运动的国度都在热衷于足球。足球运动在中国长久不衰落,观赛球迷数量和美国相比只多不少,大概都可以用亿计都说不定。ESPN 是美国球迷首选的观赛平台,优酷土豆和新浪则是中国球迷网民的看球首选。优酷土豆和新浪的转播队伍很可能要服务比 ESPN 更庞大的观众群——中国球迷。中国新闻网的消息指出,世界杯期间优酷播放量已经破亿,另一家视频网站乐视公布数据,该网站日均覆盖用户数超过4500万,日均播放时长超过3500小时,日均播放次数超过2亿次。可见,互联网应用已经全面渗入到我们的体育生活当中。值得一提的是,优酷土豆、新浪和 ESPN 一样,这三家公司都采用了英特尔的产品作后端支持系统,提供稳定、可靠的直播服务。
观众人数的增大不仅带来了直播的压力,服务这部分群体的其他互联网和内容产品同样面临巨大的后端计算压力,比如网站的评论系统、论坛区。某一段精彩进球视频的播放次数可能会超过一场比赛的次数(因为会有人重复观看),并且球迷在评论中彼此互动,又进一步加大了网站的后台负担。所有这些挑战,如果没有足够强劲的计算能力支持,是没有办法实现的。
“多屏”普及也为体育直播的创新创造了条件,虽然平板设备能做的事情有限,且无法实现沉浸式体验(屏幕尺寸和解析度无法和主流高清电视相比),但是平板设备上丰富的 APP 资源和数据运算能力,使其能够与电视画面相配合,实现联动、互补。比如电视画面上是比赛实况,观众可能会在平板设备的“小屏”上刷微博,发表观点,也可能在上球迷论坛,与此时此刻同样在看球的其他人一起讨论。数据显示,美国地区有 85% 的平板用户在看电视的时候会使用他们的设备,多屏设备的使用体验从主动(self-initiated)变成了一种程序(programmed experience)。这种与体育直播画面的联动和互补,体现了“大数据”的优势:预测分析,尤其是挖掘出直播画面当中被忽略的成分。比如美国职业棒球联盟(MLB)采用英特尔的服务器系统实现了比赛直播中“大据”分析结果与直播画面的叠加如图,仅仅从直播画面中,无法判断两名外野手距离落点究竟有多远,反应速度、奔跑距离和加速度的详细数据。
回到本文开头,虽然体育解说员的角色被弱化,但是纵观体育直播来看,实际上依靠科技的力量被进化到一个新的程度。这种进化的推进力量,其实是英特尔这样的 IT 巨头为行业带来的强大计算能力。“大数据”技术与体育行业相渗透、结合所实现的一切,与体育运动的精神一样,是更快、更强。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14