京公网安备 11010802034615号
经营许可证编号:京B2-20210330
未来最大的能源是大数据 抓住大数据
现在很多线下小店在打折或关店,说“都是马云惹的祸,都是淘宝惹的祸”。其实,在13年以前推广整个电子商务时,我们说到互联网会影响生产、制造、销售以及社会的方方面面,电子商务将会对很多的行业带来巨大冲击,很多人并不以为然。
今天我也可以这么讲:十年以后,中国的经济也好,世界的经济也好,都是大数据惹的祸。如果你不参与整个大数据的建设,不真正把自己的企业变成互联网的制造业,将来你一定会像今天一样抱怨和埋怨。
任何事情都要站在未来角度看今天,而不仅仅从今天的成绩和能力去看待未来。这个世界正在发生很大变化,我相信未来30年是人类社会最精彩的30年,是令人期待的30年,也是令人恐慌恐惧的30年。
今天我们生活在一个非常纠结的年代,经济趋势下滑,小公司关门说是因为互联网,大公司无所适从也是因为互联网,反正每个人都怪互联网让自己出了麻烦。但另外一方面,我们又发现很多欣欣向荣的企业在不断地发展起来。
前段时间我面试了六个年轻人,倒吸了一口凉气——幸好我是15年前创业,要是在今天,肯定被这帮小子活活搞晕,因为他们用的是大数据和互联网模式,他们说的很多东西我不是很理解。但是我相信,一旦我理解,只会越来越恐慌。
我们喊了很多年的信息数据时代已经开始,政府转型创新的时代也已经开始,而转型和升级是要付出代价的。
第一次工业革命发现了煤,真正释放了人的体力,人们希望变得更强。第二次工业革命发现了其他能源,释放了人的能力,人们希望能走得更远。第三次工业革命究竟会是什么商业形态,这是我最近考虑得最多的。因为每一次工业革命的变革对商业形态所造成的影响非常大,必须从组织上去思考。任何一次军事变革经过很多年以后,一定会变成商业上的变革。
可以说,第一次工业革命造成了第一次世界大战,第二次工业革命产生了第二次世界大战,那么这一次技术革命会造成什么变化?这次技术革命释放的是人的智慧、人的脑袋,但人们没有真正想过这会让整个人类社会发生什么翻天覆地的变化。未来的组织不是公司雇佣员工,而是员工雇佣公司。这一系列的变化是因为整个技术发生了巨大的变化,因为数据的产生,让人类的社会商业先发生变化,最后一定会造成整个社会发生变化,从经济到政治体系。所以大家要去思考,什么样的组织才适合未来,什么样的团队能够适合未来?
另外,我想今天重点讲的是从IT到DT的变革。IT和DT不光是技术的提升,本质上是两个时代的竞争,标志着一个新的时代的开始。所以大家一定要高度重视DT时代的思考,DT时代的思维。IT时代是让自己更加强大,DT时代是让别人更加强大;IT时代是让别人为自己服务,DT是让你去服务好别人,让别人更爽,是以竞争对手服务竞争对手;IT时代是通过对昨天信息的分析掌控未来,控制未来,而DT时代是去创造未来;IT时代让20%的企业越来越强大,而80%的企业可能无所适从,而DT时代是释放 80%企业的能力;IT时代把人变成了机器,而DT时代把机器变成了智能化的人,所以整个世界将会发生翻天覆地的变化,我们正在进入一个新型的时代。
未来的制造业不仅仅是会生产商品和产品。未来的制造业制造出来的机器必须会思考、会说话、会交流,未来所有的制造业都将会成为互联网和大数据的终端企业。未来的制造业要的不是石油,它最大的能源是数据。所以,未来将会发生天翻地覆的竞争。
以前的平台型企业以服务别人为中心,和自己企业服务为中心,比如第二次世界大战,日本建立了当时最强大的军舰——大河舰,它拥有强大的钢甲和强大的力量,认为可以用来摧毁一切,但当它第一次远航想找航母对抗时,连航母都还没有找到,就被几架飞机给击沉了,因为航母是一个平台,虽然自己不产生进攻能力,但其上的舰载机具备强大的进攻能力,航母是一个生态。所以不管你自己有多强大,都要思考让员工更强大,让客户强大,让合作伙伴更强大,才能展开竞争。假如我们不去思考和把握未来的DT时代,那么从技术上来说,我们还是生活在昨天。
今天有无数企业在追逐、发现和参与大数据时代,也有很多互联网公司很快沦落成为传统的互联网企业,还有很多IT企业变成了传统IT,因为很多人还没有搞清楚IT,我们就进入了DT。互联网企业要参与社会变革、参与经济发展,让整个社会各方面都越来越强大,让经济更富裕、让人类更幸福,是所有互联网大企业的历史担当。
今天互联网已经不仅仅是上网看新闻、购物、玩游戏或聊天,而必须成为整个社会发展进步巨大的能源和动力。如果我们还仅仅只是把互联网当成一种工具,那样就像曾经把我国发明的火药只当做烟火和炮仗,而别人早已把它当做机器。
这是一个巨大的时代,这是一个可以共同展望未来的时代。不是去改变别人,而是要改变自己,去拥抱这个时代,这样十年以后你就不会说这是大数据惹的祸。我们应该共同把大数据真正变成人类未来巨大能源所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22