
东方国信:跨国收购强化工业大数据布局
维持“增持”评级,上调目标价到 37.44 元。东方国信作为 A 股大数据的首选标的,此次收购 Cotopaxi 正式进入工业大数据领域,将拓展出新的业务蓝海。我们上修 2015-2016 年 EPS 为 0.39 元(+10%) /0.57元(+3%) ,维持 “增持”评级,考虑到公司在大数据领域“内生+外延”的良好成长性,给予 2015 年 2 倍 PEG,上修目标价至 37.44 元(+106%),距离当前价位 52%空间。
跨国并购工业大数据标的 Cotopaxi. 公司公告以自有资金 1810 万英镑收购 Cotopaxi 公司 100%股权,后者主要基于物联网、云计算、大数据等核心技术能力为全球工业及商业企业提供能源与过程优化软件平台及咨询服务,其业务已遍布全球 35 个国家,为近 400 家工厂部署了约5 万个不同类型的监测点,主要客户包括联合利华、帝亚吉欧、王子食品、怡乐包装等。市场此前将东方国信定位为运营商大数据企业,虽此前通过并购科瑞明、北科亿力向非运营商领域跨出了第一步,但距离形成生态闭环尚有差距,与工业互联网+首选大数据标的的定位总有差距。此次收购 Cotopaxi 除进一步强化工业大数据能力外,还在前端传感及数据采集方面做出了延伸且提供了丰富的下游客户资源。我们判断,公司除继续开拓银行、运营商客户价值外,还将通过 Cotopaxi深挖 B 端工业用户价值。
催化剂:公司在工业互联网端的持续布局。
风险因素:运营商结算延迟影响净利润表现。?
其他机构研究
国海证券:东方国信收购工业互联网标的,三大数据版块鼎足之势已形成
工业+互联网正当时,收购标的正处在快速成长期工业+互联网的结合带来一场新的工业革命,工业产业链整个生命周期都涉及到海量的数据,工业企业的数据也呈现出爆炸性增长的趋势。工业互联网对于提高生产效率、节约能耗、优化生产工艺与流程等等作用巨大,据国际权威机构测算,应用工业互联网后,企业的效率将提高大约20%,成本可以下降20%,能源消耗可以下降10%左右。我国发改委、工信部近两年先后出台政策,要求中国各级政府及17,000 家重点耗能企业建设和提升工业节能监测分析平台,简单测算我国的工业能效监测市场是千亿级别的市场,而且刚刚启动。
作为全球节能服务与过程优化领域的领先企业,Cotopaxi 已在全球35 个国家近400 家工厂部署了约50,000不同类型的监测点,主要客户包括联合利华、帝亚吉欧、王子食品、怡乐包装等,并已在中国两家大型高耗能企业落地能效监测平台和节能专家系统项目。标的公司的过往业绩以及承诺业绩均体现出高速成长性,而东方国信的并购价格相对于标的公司2015 年承诺业绩的估值仅为7.5 倍,此次收购性价比极高。
工业大数据再补强,通信+金融+工业的三大数据版块鼎力,订单模式不轻言顶此次收购是公司大数据业务向工业互联网、工业智能化领域的重要布局,将有力补充公司工业大数据版块的业务,提升公司市场空间。我们认为,1、公司大数据业务的三大版块已经形成,且从增长速度来看,金融和工业两大版块的增速更快。公司2014 年收购的上海屹通信息订单迎来爆发,在手机银行业务基础上又开拓出互联网金融平台和移动大数据平台,新产品在越来越多的银行中标,金融业务已经成为公司收入和利润增长最为迅速的行业。工业大数据在我国刚刚启动,可以说是蓝海市场,北科亿力+Cotopaxi 的组合将推动公司在这个千亿市场空间的领域不断斩获订单。此外,建议关注公司在政府大数据的布局和进展。2、因为公司传统电信业务已经达到了一定规模,虽然在开拓新市场方面屡有超预期表现,但市场对公司订单制模式的发展普遍担心天花板问题。近两年的收购,尤其是屹通信息的并购让市场看到了公司在非电信行业的增长潜力。电信行业是信息化和市场化是最早的,公司在电信行业已经证明了自己的能力,现在正将这种优势复制到金融、工业、政府等其他行业,其他行业正处在对大数据平台、大数据业务需求爆发的阶段,核心逻辑就是数据驱动效率提升降低成本。我们认为仅仅凭订单模式,公司通过两年左右的时间就可以达到5 亿元的净利润,而且这只是刚开始,我们重申大数据对各行各业的重要性:传统行业转型互联网、移动互联网,触网是第一步,意图在网上积聚足够多的用户和数据,以达到精准营销的最终目标,有了用户和数据后,一定是通过大数据技术来实现。
数据运营更引人遐想,仍需等待数据运营一直是市场关注的焦点。根据上述分析,我们认为公司要想将跨行业数据运营落地,大概率上是通过合作和外延的方式来完成。数据运营的公司价值体现在两个层面:一、真正拥有大数据,这种公司极少。二、具有运营落地的能力,一般在垂直领域,模式或B2C 或B2B2C。公司一直在关注和尝试将数据引入一些垂直领域,但目前来看,真正实现运营闭环仍需时间,建议积极关注。
维持买入评级假设Cotopaxi 2015 年全年合并报表,我们预测公司2015 年-2017 年全面摊薄后的EPS分别为0.44 元、0.59 元、0.75 元,对应PE 分别为55.5 倍、42.0 倍、32.7 倍。我们坚定看好公司的长期成长性,维持“买入”评级。
风险提示收购未获批;运营商对BI 的投资力度低于预期或投资进度慢于预期;运营商结算延迟风险;收购带来的整合风险;创业板大幅下跌风险。(国海证券)
维持“增持”评级,上调目标价到 37.44 元。东方国信作为 A 股大数据的首选标的,此次收购 Cotopaxi 正式进入工业大数据领域,将拓展出新的业务蓝海。我们上修 2015-2016 年 EPS 为 0.39 元(+10%) /0.57元(+3%) ,维持 “增持”评级,考虑到公司在大数据领域“内生+外延”的良好成长性,给予 2015 年 2 倍 PEG,上修目标价至 37.44 元(+106%),距离当前价位 52%空间。
跨国并购工业大数据标的 Cotopaxi. 公司公告以自有资金 1810 万英镑收购 Cotopaxi 公司 100%股权,后者主要基于物联网、云计算、大数据等核心技术能力为全球工业及商业企业提供能源与过程优化软件平台及咨询服务,其业务已遍布全球 35 个国家,为近 400 家工厂部署了约5 万个不同类型的监测点,主要客户包括联合利华、帝亚吉欧、王子食品、怡乐包装等。市场此前将东方国信定位为运营商大数据企业,虽此前通过并购科瑞明、北科亿力向非运营商领域跨出了第一步,但距离形成生态闭环尚有差距,与工业互联网+首选大数据标的的定位总有差距。此次收购 Cotopaxi 除进一步强化工业大数据能力外,还在前端传感及数据采集方面做出了延伸且提供了丰富的下游客户资源。我们判断,公司除继续开拓银行、运营商客户价值外,还将通过 Cotopaxi深挖 B 端工业用户价值。
催化剂:公司在工业互联网端的持续布局。
风险因素:运营商结算延迟影响净利润表现。?
其他机构研究
国海证券:东方国信收购工业互联网标的,三大数据版块鼎足之势已形成
工业+互联网正当时,收购标的正处在快速成长期工业+互联网的结合带来一场新的工业革命,工业产业链整个生命周期都涉及到海量的数据,工业企业的数据也呈现出爆炸性增长的趋势。工业互联网对于提高生产效率、节约能耗、优化生产工艺与流程等等作用巨大,据国际权威机构测算,应用工业互联网后,企业的效率将提高大约20%,成本可以下降20%,能源消耗可以下降10%左右。我国发改委、工信部近两年先后出台政策,要求中国各级政府及17,000 家重点耗能企业建设和提升工业节能监测分析平台,简单测算我国的工业能效监测市场是千亿级别的市场,而且刚刚启动。
作为全球节能服务与过程优化领域的领先企业,Cotopaxi 已在全球35 个国家近400 家工厂部署了约50,000不同类型的监测点,主要客户包括联合利华、帝亚吉欧、王子食品、怡乐包装等,并已在中国两家大型高耗能企业落地能效监测平台和节能专家系统项目。标的公司的过往业绩以及承诺业绩均体现出高速成长性,而东方国信的并购价格相对于标的公司2015 年承诺业绩的估值仅为7.5 倍,此次收购性价比极高。
工业大数据再补强,通信+金融+工业的三大数据版块鼎力,订单模式不轻言顶此次收购是公司大数据业务向工业互联网、工业智能化领域的重要布局,将有力补充公司工业大数据版块的业务,提升公司市场空间。我们认为,1、公司大数据业务的三大版块已经形成,且从增长速度来看,金融和工业两大版块的增速更快。公司2014 年收购的上海屹通信息订单迎来爆发,在手机银行业务基础上又开拓出互联网金融平台和移动大数据平台,新产品在越来越多的银行中标,金融业务已经成为公司收入和利润增长最为迅速的行业。工业大数据在我国刚刚启动,可以说是蓝海市场,北科亿力+Cotopaxi 的组合将推动公司在这个千亿市场空间的领域不断斩获订单。此外,建议关注公司在政府大数据的布局和进展。2、因为公司传统电信业务已经达到了一定规模,虽然在开拓新市场方面屡有超预期表现,但市场对公司订单制模式的发展普遍担心天花板问题。近两年的收购,尤其是屹通信息的并购让市场看到了公司在非电信行业的增长潜力。电信行业是信息化和市场化是最早的,公司在电信行业已经证明了自己的能力,现在正将这种优势复制到金融、工业、政府等其他行业,其他行业正处在对大数据平台、大数据业务需求爆发的阶段,核心逻辑就是数据驱动效率提升降低成本。我们认为仅仅凭订单模式,公司通过两年左右的时间就可以达到5 亿元的净利润,而且这只是刚开始,我们重申大数据对各行各业的重要性:传统行业转型互联网、移动互联网,触网是第一步,意图在网上积聚足够多的用户和数据,以达到精准营销的最终目标,有了用户和数据后,一定是通过大数据技术来实现。
数据运营更引人遐想,仍需等待数据运营一直是市场关注的焦点。根据上述分析,我们认为公司要想将跨行业数据运营落地,大概率上是通过合作和外延的方式来完成。数据运营的公司价值体现在两个层面:一、真正拥有大数据,这种公司极少。二、具有运营落地的能力,一般在垂直领域,模式或B2C 或B2B2C。公司一直在关注和尝试将数据引入一些垂直领域,但目前来看,真正实现运营闭环仍需时间,建议积极关注。
维持买入评级假设Cotopaxi 2015 年全年合并报表,我们预测公司2015 年-2017 年全面摊薄后的EPS分别为0.44 元、0.59 元、0.75 元,对应PE 分别为55.5 倍、42.0 倍、32.7 倍。我们坚定看好公司的长期成长性,维持“买入”评级。
风险提示收购未获批;运营商对BI 的投资力度低于预期或投资进度慢于预期;运营商结算延迟风险;收购带来的整合风险;创业板大幅下跌风险。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18