
东方国信:跨国收购强化工业大数据布局
维持“增持”评级,上调目标价到 37.44 元。东方国信作为 A 股大数据的首选标的,此次收购 Cotopaxi 正式进入工业大数据领域,将拓展出新的业务蓝海。我们上修 2015-2016 年 EPS 为 0.39 元(+10%) /0.57元(+3%) ,维持 “增持”评级,考虑到公司在大数据领域“内生+外延”的良好成长性,给予 2015 年 2 倍 PEG,上修目标价至 37.44 元(+106%),距离当前价位 52%空间。
跨国并购工业大数据标的 Cotopaxi. 公司公告以自有资金 1810 万英镑收购 Cotopaxi 公司 100%股权,后者主要基于物联网、云计算、大数据等核心技术能力为全球工业及商业企业提供能源与过程优化软件平台及咨询服务,其业务已遍布全球 35 个国家,为近 400 家工厂部署了约5 万个不同类型的监测点,主要客户包括联合利华、帝亚吉欧、王子食品、怡乐包装等。市场此前将东方国信定位为运营商大数据企业,虽此前通过并购科瑞明、北科亿力向非运营商领域跨出了第一步,但距离形成生态闭环尚有差距,与工业互联网+首选大数据标的的定位总有差距。此次收购 Cotopaxi 除进一步强化工业大数据能力外,还在前端传感及数据采集方面做出了延伸且提供了丰富的下游客户资源。我们判断,公司除继续开拓银行、运营商客户价值外,还将通过 Cotopaxi深挖 B 端工业用户价值。
催化剂:公司在工业互联网端的持续布局。
风险因素:运营商结算延迟影响净利润表现。?
其他机构研究
国海证券:东方国信收购工业互联网标的,三大数据版块鼎足之势已形成
工业+互联网正当时,收购标的正处在快速成长期工业+互联网的结合带来一场新的工业革命,工业产业链整个生命周期都涉及到海量的数据,工业企业的数据也呈现出爆炸性增长的趋势。工业互联网对于提高生产效率、节约能耗、优化生产工艺与流程等等作用巨大,据国际权威机构测算,应用工业互联网后,企业的效率将提高大约20%,成本可以下降20%,能源消耗可以下降10%左右。我国发改委、工信部近两年先后出台政策,要求中国各级政府及17,000 家重点耗能企业建设和提升工业节能监测分析平台,简单测算我国的工业能效监测市场是千亿级别的市场,而且刚刚启动。
作为全球节能服务与过程优化领域的领先企业,Cotopaxi 已在全球35 个国家近400 家工厂部署了约50,000不同类型的监测点,主要客户包括联合利华、帝亚吉欧、王子食品、怡乐包装等,并已在中国两家大型高耗能企业落地能效监测平台和节能专家系统项目。标的公司的过往业绩以及承诺业绩均体现出高速成长性,而东方国信的并购价格相对于标的公司2015 年承诺业绩的估值仅为7.5 倍,此次收购性价比极高。
工业大数据再补强,通信+金融+工业的三大数据版块鼎力,订单模式不轻言顶此次收购是公司大数据业务向工业互联网、工业智能化领域的重要布局,将有力补充公司工业大数据版块的业务,提升公司市场空间。我们认为,1、公司大数据业务的三大版块已经形成,且从增长速度来看,金融和工业两大版块的增速更快。公司2014 年收购的上海屹通信息订单迎来爆发,在手机银行业务基础上又开拓出互联网金融平台和移动大数据平台,新产品在越来越多的银行中标,金融业务已经成为公司收入和利润增长最为迅速的行业。工业大数据在我国刚刚启动,可以说是蓝海市场,北科亿力+Cotopaxi 的组合将推动公司在这个千亿市场空间的领域不断斩获订单。此外,建议关注公司在政府大数据的布局和进展。2、因为公司传统电信业务已经达到了一定规模,虽然在开拓新市场方面屡有超预期表现,但市场对公司订单制模式的发展普遍担心天花板问题。近两年的收购,尤其是屹通信息的并购让市场看到了公司在非电信行业的增长潜力。电信行业是信息化和市场化是最早的,公司在电信行业已经证明了自己的能力,现在正将这种优势复制到金融、工业、政府等其他行业,其他行业正处在对大数据平台、大数据业务需求爆发的阶段,核心逻辑就是数据驱动效率提升降低成本。我们认为仅仅凭订单模式,公司通过两年左右的时间就可以达到5 亿元的净利润,而且这只是刚开始,我们重申大数据对各行各业的重要性:传统行业转型互联网、移动互联网,触网是第一步,意图在网上积聚足够多的用户和数据,以达到精准营销的最终目标,有了用户和数据后,一定是通过大数据技术来实现。
数据运营更引人遐想,仍需等待数据运营一直是市场关注的焦点。根据上述分析,我们认为公司要想将跨行业数据运营落地,大概率上是通过合作和外延的方式来完成。数据运营的公司价值体现在两个层面:一、真正拥有大数据,这种公司极少。二、具有运营落地的能力,一般在垂直领域,模式或B2C 或B2B2C。公司一直在关注和尝试将数据引入一些垂直领域,但目前来看,真正实现运营闭环仍需时间,建议积极关注。
维持买入评级假设Cotopaxi 2015 年全年合并报表,我们预测公司2015 年-2017 年全面摊薄后的EPS分别为0.44 元、0.59 元、0.75 元,对应PE 分别为55.5 倍、42.0 倍、32.7 倍。我们坚定看好公司的长期成长性,维持“买入”评级。
风险提示收购未获批;运营商对BI 的投资力度低于预期或投资进度慢于预期;运营商结算延迟风险;收购带来的整合风险;创业板大幅下跌风险。(国海证券)
维持“增持”评级,上调目标价到 37.44 元。东方国信作为 A 股大数据的首选标的,此次收购 Cotopaxi 正式进入工业大数据领域,将拓展出新的业务蓝海。我们上修 2015-2016 年 EPS 为 0.39 元(+10%) /0.57元(+3%) ,维持 “增持”评级,考虑到公司在大数据领域“内生+外延”的良好成长性,给予 2015 年 2 倍 PEG,上修目标价至 37.44 元(+106%),距离当前价位 52%空间。
跨国并购工业大数据标的 Cotopaxi. 公司公告以自有资金 1810 万英镑收购 Cotopaxi 公司 100%股权,后者主要基于物联网、云计算、大数据等核心技术能力为全球工业及商业企业提供能源与过程优化软件平台及咨询服务,其业务已遍布全球 35 个国家,为近 400 家工厂部署了约5 万个不同类型的监测点,主要客户包括联合利华、帝亚吉欧、王子食品、怡乐包装等。市场此前将东方国信定位为运营商大数据企业,虽此前通过并购科瑞明、北科亿力向非运营商领域跨出了第一步,但距离形成生态闭环尚有差距,与工业互联网+首选大数据标的的定位总有差距。此次收购 Cotopaxi 除进一步强化工业大数据能力外,还在前端传感及数据采集方面做出了延伸且提供了丰富的下游客户资源。我们判断,公司除继续开拓银行、运营商客户价值外,还将通过 Cotopaxi深挖 B 端工业用户价值。
催化剂:公司在工业互联网端的持续布局。
风险因素:运营商结算延迟影响净利润表现。?
其他机构研究
国海证券:东方国信收购工业互联网标的,三大数据版块鼎足之势已形成
工业+互联网正当时,收购标的正处在快速成长期工业+互联网的结合带来一场新的工业革命,工业产业链整个生命周期都涉及到海量的数据,工业企业的数据也呈现出爆炸性增长的趋势。工业互联网对于提高生产效率、节约能耗、优化生产工艺与流程等等作用巨大,据国际权威机构测算,应用工业互联网后,企业的效率将提高大约20%,成本可以下降20%,能源消耗可以下降10%左右。我国发改委、工信部近两年先后出台政策,要求中国各级政府及17,000 家重点耗能企业建设和提升工业节能监测分析平台,简单测算我国的工业能效监测市场是千亿级别的市场,而且刚刚启动。
作为全球节能服务与过程优化领域的领先企业,Cotopaxi 已在全球35 个国家近400 家工厂部署了约50,000不同类型的监测点,主要客户包括联合利华、帝亚吉欧、王子食品、怡乐包装等,并已在中国两家大型高耗能企业落地能效监测平台和节能专家系统项目。标的公司的过往业绩以及承诺业绩均体现出高速成长性,而东方国信的并购价格相对于标的公司2015 年承诺业绩的估值仅为7.5 倍,此次收购性价比极高。
工业大数据再补强,通信+金融+工业的三大数据版块鼎力,订单模式不轻言顶此次收购是公司大数据业务向工业互联网、工业智能化领域的重要布局,将有力补充公司工业大数据版块的业务,提升公司市场空间。我们认为,1、公司大数据业务的三大版块已经形成,且从增长速度来看,金融和工业两大版块的增速更快。公司2014 年收购的上海屹通信息订单迎来爆发,在手机银行业务基础上又开拓出互联网金融平台和移动大数据平台,新产品在越来越多的银行中标,金融业务已经成为公司收入和利润增长最为迅速的行业。工业大数据在我国刚刚启动,可以说是蓝海市场,北科亿力+Cotopaxi 的组合将推动公司在这个千亿市场空间的领域不断斩获订单。此外,建议关注公司在政府大数据的布局和进展。2、因为公司传统电信业务已经达到了一定规模,虽然在开拓新市场方面屡有超预期表现,但市场对公司订单制模式的发展普遍担心天花板问题。近两年的收购,尤其是屹通信息的并购让市场看到了公司在非电信行业的增长潜力。电信行业是信息化和市场化是最早的,公司在电信行业已经证明了自己的能力,现在正将这种优势复制到金融、工业、政府等其他行业,其他行业正处在对大数据平台、大数据业务需求爆发的阶段,核心逻辑就是数据驱动效率提升降低成本。我们认为仅仅凭订单模式,公司通过两年左右的时间就可以达到5 亿元的净利润,而且这只是刚开始,我们重申大数据对各行各业的重要性:传统行业转型互联网、移动互联网,触网是第一步,意图在网上积聚足够多的用户和数据,以达到精准营销的最终目标,有了用户和数据后,一定是通过大数据技术来实现。
数据运营更引人遐想,仍需等待数据运营一直是市场关注的焦点。根据上述分析,我们认为公司要想将跨行业数据运营落地,大概率上是通过合作和外延的方式来完成。数据运营的公司价值体现在两个层面:一、真正拥有大数据,这种公司极少。二、具有运营落地的能力,一般在垂直领域,模式或B2C 或B2B2C。公司一直在关注和尝试将数据引入一些垂直领域,但目前来看,真正实现运营闭环仍需时间,建议积极关注。
维持买入评级假设Cotopaxi 2015 年全年合并报表,我们预测公司2015 年-2017 年全面摊薄后的EPS分别为0.44 元、0.59 元、0.75 元,对应PE 分别为55.5 倍、42.0 倍、32.7 倍。我们坚定看好公司的长期成长性,维持“买入”评级。
风险提示收购未获批;运营商对BI 的投资力度低于预期或投资进度慢于预期;运营商结算延迟风险;收购带来的整合风险;创业板大幅下跌风险。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17