京公网安备 11010802034615号
经营许可证编号:京B2-20210330
制造业在大数据时代迎来新的发展机遇
集装箱拖车的轮子太多也太大了,因此对于货运公司来说,监测这些重型卡车轮胎的磨损情况,并且为其维护和更换轮胎,是一项相当艰巨的工作。
如果货运公司能把所有这些麻烦转移给轮胎制造商,情况会怎么样呢?轮胎上可以配置很多小型传感器,自动对轮胎进行监测,并将情况实时回传给制造商。而轮胎制造商在了解了每个轮胎的情况后,就可以定期安排轮胎的更换和维护了。
如此一来,对货运公司而言,运输里程增加了,安全性改善了,责任降低了,对数千个轮胎进行维护的流程得到了简化,甚至被彻底取消。在另一边,轮胎制造商接手了这些工作,也接手了安全风险,但也将从中获得回报——现在,制造商不只是在销售轮胎,更是在销售行驶里程。
这只是关于数据如何转变制造业的一个实例。如今,技术市场上还有很多人在四处炒作大数据和物联网的概念;但事实上,越来越强大的传感器和各类设备通过与后台系统、分析软件和云的连接,已经为各行各业带来了深刻的变革。随着这些联网运行方式的普及,制造业不仅得到了实现自动化和创造效率的全新手段,其管理层更注意到了利润增长前景光明的全新增长点——服务。
这一趋势不可逆转。根据微软委托IDC进行的一项最新研究,制造业在未来四年内从数据中获得的价值将高达3710亿美元。通过更好地利用数据,他们不仅可以提高生产效率、精简流程,还可以更好地管理客户关系,改善产品和服务。美国总统奥巴马最近宣布联邦政府将拨款1.4亿美元支持两家新设机构,正是因为它们能帮助企业收获不断增长的“数据红利”。而在长期以来一直被视为欧洲制造中心的德国,他们将这种新潮流称为工业4.0 ——其意义完全不亚于第四次工业革命。
对美国、德国,以及世界上其它所有国家而言,这一变革的第一阶段,首先是要从不断增长的海量数据中发掘效率,将生产车间与后台的IT技术连接起来,构成一个完整的“智能系统”。这种方式能够帮助制造商从生产流程中压缩成本,从而减轻发达经济体的压力,令其能够以更低的生产成本去更好地参与全球市场竞争。
每个人都希望生产线更精简、更高效,其实从许多方面来看,利用数据洞察来提升生产效率是最触手可及的办法。下一波机会就在于运用这些洞察,在供应链和需求链中构建效率,获取价值。诚然,要共享敏感业务数据是个挑战,但对大多数公司和企业来说,其回报将大于风险。
这一趋势已经改变了制造商看待自己及客户关系的方式。汽车的演进就是一个生动的例子。汽车的技术含量已经成为影响顾客购买决策的重要因素,并促使汽车厂商重新思考其与客户之间的关系。过去,这种关系基本上在交钱开票之后就结束了;而今天,汽车制造商已经变身成为科学技术的供应商。管理客户的售后体验、在汽车保有周期内为客户提供丰富、持续的在线服务,已变得与传统的生产销售工作同等、甚至更加重要。
在恰当的时间捕获恰当的数据,然后传送给企业内部恰当的人——这种通常被称为“数据民主”的处理方式,将是改变游戏规则的关键。一旦制造商透过各种设备、流程、人员和外部网络将分散的数据连接起来,数据就能进化成洞察。从此,制造商可以主动向客户发送备件和更新,安排维修事宜,预测存货需求和费用,而且这些工作的准确性将大大提高。而在过去,这些客户相关的工作往往需要耗费大量的人力、物力,并总会产生很多麻烦。
数据能通过释放制造业业务流程中的智能,去提升运营效率。而对于那些不仅想要节约成本、更希望能增加收入的制造商来说,服务,作为可持续的新收入来源,其吸引力要远远超过单纯销售装置或设备。可以将其想象成是在销售订阅服务,而不单单是卖一本杂志,或者是从远在意大利的总部为安装在纽约的设备提供服务。
要真正走上这条变革之路,制造商要做出一系列的抉择,而其中最重要的,就是选择真正有实力的技术合作伙伴。彼此间的信任、员工对应用软件的熟悉程度、对行业知识的掌握、用以连接设备生成数据的智能且安全的云服务、跨设备和服务的可扩充的大数据云平台、互操作能力、丰富的合作伙伴生态系统——上述这些还仅仅是制造商在选择迈进第四次工业革命时,应该用来评估合作伙伴技术能力的部分指标。
在这个普适计算日渐成型的世界中,拥抱数据文化的企业和单位必将获得巨大的潜在回报。尽管未来无法预测,但这一潜力所带来的诱惑,已经在制造业激起了新波的创新浪潮。现在,摆在制造商面前的只有一个问题——去引领这个潮流,抑或任凭自己被浪潮所吞没。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15