京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你真的不了解这个星球—涨姿势的大数据
1. 首先来看看地球,看起来不错哟,地球~
2. 图中圈圈里头的人口,比其他地区的所有总和都还要多。
3. 以整个地球史来看,曾活过的人类高达1150亿人,其中包括现存的70亿人口,你也是其中的一员。
上图每一个点就是1000万人,每年有1.4亿人诞生,现在有70亿人口;每年有5700万人死亡,估计曾有1080亿人在地球生活过,然后死去。
4. 每一天,地球都有人飞来又飞去,就像下图这样:
5. 这是南极州,比美国还要大呢!
还有,非洲比你想像的还要大多了,看看一些国家塞进来的样子…
把美国、西班牙、比利时、荷兰、法国、德国、义大利、瑞士、东欧、印度、中国的一部分、英国、日本…全都放进去。
6. 如果地球没有水的话,就会变成这样…
7. 你知道太平洋其实比起想像的还要大吗?
8. 这是马里亚纳海沟 (Mariana Trench) 的深度,难怪还有这么多人类尚未探索到的海底生物。
可以深到10972公尺…或更多。
9. 我们都知道有很多人造卫星,但是你知道有这么多吗?
10. 把美国放到月球的话,大小比例是这样…
11. 地球到月球的距离貌似很短,但是已经可以塞下太阳系的所有星球了。
有384,400公里那么远喔~
12. 若把火星上头的奥林帕斯山 (Olympus Mons) 拿来跟地球的高山来比较的话…地球的好像就是小儿科啊…
奥林帕斯山有27公里高,几乎是圣母峰的3倍高,也比毛纳基火山 (从水底山脚计算) 的2倍还要高。奥林帕斯山已经高耸进火星的大气层了。它的基底有550公里那么宽广,意思也就是,如果你站在破火山口来看的话,它的山脚会一路绵延超过地平线。
13. 而这座巨型火山,大概也跟一个法国差不多大。
14. 木星的体积也不小,只是距离我们太远了。但如果木星距离我们就跟月球一样近的话,我们会看到…
心脏根本就不够用啊!仰望天空时太惊悚了吧!
15. 左是木星卫星「木卫二」(Europa) 上头的水量,右则是地球上的水量。
什么!地球的水比想像中的还要少这么多呀!
16. 每一天,都是木星让陨石的轨迹远离地球的。
虽然不知道你听不听得到,但谢谢你,木星。(对天呐喊~)
17. 我们都知道宇宙里头有许多彗星,但你可能对它们的大小没有什么概念。好吧,如果拿洛杉矶 (LA) 跟彗星比较的话…
18. 我们的太阳系也是不断地移动,我们现在跟2.25亿年前的地球是在同一个位置,当时恐龙都还活着。
我们的太阳系会花上2.25亿年绕行银河系,上一次地球在同一个位置的时候,恐龙都还存在着。
19. 仰望天空,我们都觉得其他的星星很小,但若从土星的环后方来看的话,地球也相当渺小。
20. 事实上,你眼睛所能看见、人类所知道的,其实都只有在这小小的圈圈里头。
21. 而在银河系当中,所有人类向宇宙广播可以触及的范围,就只有那蓝色的小点点那么多。难怪我们一直都没有找到其他高智能的生命…
22. 而这是我们每年在银河系当中所发现的星球数量:
23. 银河系貌似很大,但我们再来比较一下…
(左到右) 银河系、仙女座星系 (Andromeda)、室女A星系 (m87)、IC-1011星系。
24. 看完之后,你可能跟我一样觉得自己相当渺小,但别忘了,每天有上兆的细胞在你的体内运行着。以下是白血球正在攻击寄生虫的样子:
25. 在细分一些,这些东西都是由分子组成的,而这是其中的一个:
最后也忘了,你体内是有7,000,000,000,000,000,000,000,000,000 个原子的,这就是你!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27