京公网安备 11010802034615号
经营许可证编号:京B2-20210330
贺强建议完善金融监管机制 用大数据提供评价指标
3月12日全国政协委员、中央财经大学金融学院教授贺强在2015年两会上,提交了一份“关于完善金融监管机制充分释放市场活力的提案”。
贺强指出,在许多具体金融业务层面,我们还是存在管的过严、管的过宽、管的过细的问题,甚至管了很多不该管的事情。这种情况极大地阻碍了金融市场化改革的进程,制约了金融机构的自主发展,削弱了金融市场化配置社会资源的能力。
在发给中国网财经记者的这份提案中,贺强建议应当建立完善的法律法规,促使金融产品和服务的提供者充分的披露必要的信息、保障投资人权益;同时通过动态的手段对其自身的经营管理和偿付能力加以监控。
贺强还建议,利用云计算和大数据,得出量化的评价指标作为监管决策的参考和支撑。
附:贺强《关于完善金融监管机制充分释放市场活力的提案》全文
关于完善金融监管机制充分释放市场活力的提案
全国政协委员、中央财经大学金融学院 贺强教授
行业监管一般分为行政监管和市场监管,前者主要通过政府行政机构实施监管,后者以法律约束和行业自律为主。我国目前的金融监管机制是以行政监管为主、市场监管为辅。随着近年来我国金融改革的不断深化,以及互联网金融的高速发展,这一机制已经逐渐难以满足金融行业发展的需求。
党的十八届三中全会指出:经济体制改革是全面深化改革的重点,核心问题是处理好政府和市场的关系,使市场在资源配置中起决定性作用和更好发挥政府作用。我国的金融监管机构已经充分地认识到市场化思维对于金融监管的重要性。
2015年人民银行工作会议指出:2014年,在党中央、国务院的正确领导下,人民银行坚持稳中求进、改革创新,取消和下放了一批行政审批事项;人民币存款利率上限由基准利率的1.1倍扩大至1.2倍,金融机构自主定价空间和定价能力进一步提升;人民币汇率形成机制不断完善,银行间即期外汇市场人民币兑美元交易价浮动幅度由1%扩大至2%,人民币汇率双向浮动弹性增强,央行基本退出常态化的外汇干预。可以说,央行的这一系列举措实质性推动了金融市场化改革的进程。
但是,在许多具体金融业务层面,我们还是存在管的过严、管的过宽、管的过细的问题,甚至管了很多不该管的事情。这种情况极大地阻碍了金融市场化改革的进程,制约了金融机构的自主发展,削弱了金融市场化配置社会资源的能力。
为此,我们要继续深入推进金融市场化改革,进一步完善金融监管体系的建设,释放市场活力。具体包括:
一、建立完善的投资人保护和信息披露的政策法规,充分发挥市场自身的议价机制
任何一项金融产品,只要有收益,都会存在风险。消费者和投资人根据收益不同,拥有自主选择金融产品和服务的权利。对于相应产品和服务的风险承受能力,应当在金融产品和服务的提供者尽到必要的告知义务以后,由消费者和投资人自主判断。针对金融机构由于自身经营管理原因造成的风险并不属于市场风险,应由金融机构制定相应的方案加以应对。
应当建立完善的法律法规,促使金融产品和服务的提供者充分的披露必要的信息、保障投资人权益;同时通过动态的手段对其自身的经营管理和偿付能力加以监控。在满足上述要求以后,金融机构可以与各方市场参与主体共同议价,提供相应的产品和服务。
二、建立科学量化的风险评价机制,为监管行为提供数据支撑
在以往的金融监管过程中,“风险”几乎是监管机构评价金融产品和服务的唯一参考。以“风险高”为理由被叫停的金融业务比比皆是,然而风险的高低目前鲜有清晰明确的量化指标。
科学的监管应当做到有理、有据。“理”是必要的法律法规,“据”则是科学量化的评价依据。在云计算和大数据充分发展的今天,应当摒弃经验主义和教条主义,通过科学合理的模型,利用大数据技术,得出量化的评价指标作为监管决策的参考和支撑。这也是科学监管的必然趋势。
三、继续深化科学合理的分级监管制度,契合市场中发展程度不同的参与主体
自上世纪80年代,我国就开始实行分级管理制度。目前,分级管理已成为我国行业监管普遍的作法,涉及民生、经济管理、安全、信用等经济社会的方方面面。我国金融行业也普遍实行分级管理,它一般是从风险防范的角度进行的。然而近几年来,金融业态的发展产生许多变化。包括互联网金融在内的许多创新型金融产品和服务层出不穷。对于这些新兴领域,目前基本采用了“一刀切”的监管方式。
监管机构应当将更为适应市场需求的分级监管方式深化到金融体系的各个环节,通过分级管理合理配置监管资源,提高监管效率。同时,针对规模体量较大的创新产品和服务,不能单方面从可能产生的负面影响来定义监管的松紧。金融机构自身的风险控制能力以及风险承受能力也应当作为监管幅度调整的重要参考,进而避免过于从风险控制角度追求“抓大放小”,从而忽视了从行业发展角度“扶优限劣”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08