京公网安备 11010802034615号
经营许可证编号:京B2-20210330
贺强建议完善金融监管机制 用大数据提供评价指标
3月12日全国政协委员、中央财经大学金融学院教授贺强在2015年两会上,提交了一份“关于完善金融监管机制充分释放市场活力的提案”。
贺强指出,在许多具体金融业务层面,我们还是存在管的过严、管的过宽、管的过细的问题,甚至管了很多不该管的事情。这种情况极大地阻碍了金融市场化改革的进程,制约了金融机构的自主发展,削弱了金融市场化配置社会资源的能力。
在发给中国网财经记者的这份提案中,贺强建议应当建立完善的法律法规,促使金融产品和服务的提供者充分的披露必要的信息、保障投资人权益;同时通过动态的手段对其自身的经营管理和偿付能力加以监控。
贺强还建议,利用云计算和大数据,得出量化的评价指标作为监管决策的参考和支撑。
附:贺强《关于完善金融监管机制充分释放市场活力的提案》全文
关于完善金融监管机制充分释放市场活力的提案
全国政协委员、中央财经大学金融学院 贺强教授
行业监管一般分为行政监管和市场监管,前者主要通过政府行政机构实施监管,后者以法律约束和行业自律为主。我国目前的金融监管机制是以行政监管为主、市场监管为辅。随着近年来我国金融改革的不断深化,以及互联网金融的高速发展,这一机制已经逐渐难以满足金融行业发展的需求。
党的十八届三中全会指出:经济体制改革是全面深化改革的重点,核心问题是处理好政府和市场的关系,使市场在资源配置中起决定性作用和更好发挥政府作用。我国的金融监管机构已经充分地认识到市场化思维对于金融监管的重要性。
2015年人民银行工作会议指出:2014年,在党中央、国务院的正确领导下,人民银行坚持稳中求进、改革创新,取消和下放了一批行政审批事项;人民币存款利率上限由基准利率的1.1倍扩大至1.2倍,金融机构自主定价空间和定价能力进一步提升;人民币汇率形成机制不断完善,银行间即期外汇市场人民币兑美元交易价浮动幅度由1%扩大至2%,人民币汇率双向浮动弹性增强,央行基本退出常态化的外汇干预。可以说,央行的这一系列举措实质性推动了金融市场化改革的进程。
但是,在许多具体金融业务层面,我们还是存在管的过严、管的过宽、管的过细的问题,甚至管了很多不该管的事情。这种情况极大地阻碍了金融市场化改革的进程,制约了金融机构的自主发展,削弱了金融市场化配置社会资源的能力。
为此,我们要继续深入推进金融市场化改革,进一步完善金融监管体系的建设,释放市场活力。具体包括:
一、建立完善的投资人保护和信息披露的政策法规,充分发挥市场自身的议价机制
任何一项金融产品,只要有收益,都会存在风险。消费者和投资人根据收益不同,拥有自主选择金融产品和服务的权利。对于相应产品和服务的风险承受能力,应当在金融产品和服务的提供者尽到必要的告知义务以后,由消费者和投资人自主判断。针对金融机构由于自身经营管理原因造成的风险并不属于市场风险,应由金融机构制定相应的方案加以应对。
应当建立完善的法律法规,促使金融产品和服务的提供者充分的披露必要的信息、保障投资人权益;同时通过动态的手段对其自身的经营管理和偿付能力加以监控。在满足上述要求以后,金融机构可以与各方市场参与主体共同议价,提供相应的产品和服务。
二、建立科学量化的风险评价机制,为监管行为提供数据支撑
在以往的金融监管过程中,“风险”几乎是监管机构评价金融产品和服务的唯一参考。以“风险高”为理由被叫停的金融业务比比皆是,然而风险的高低目前鲜有清晰明确的量化指标。
科学的监管应当做到有理、有据。“理”是必要的法律法规,“据”则是科学量化的评价依据。在云计算和大数据充分发展的今天,应当摒弃经验主义和教条主义,通过科学合理的模型,利用大数据技术,得出量化的评价指标作为监管决策的参考和支撑。这也是科学监管的必然趋势。
三、继续深化科学合理的分级监管制度,契合市场中发展程度不同的参与主体
自上世纪80年代,我国就开始实行分级管理制度。目前,分级管理已成为我国行业监管普遍的作法,涉及民生、经济管理、安全、信用等经济社会的方方面面。我国金融行业也普遍实行分级管理,它一般是从风险防范的角度进行的。然而近几年来,金融业态的发展产生许多变化。包括互联网金融在内的许多创新型金融产品和服务层出不穷。对于这些新兴领域,目前基本采用了“一刀切”的监管方式。
监管机构应当将更为适应市场需求的分级监管方式深化到金融体系的各个环节,通过分级管理合理配置监管资源,提高监管效率。同时,针对规模体量较大的创新产品和服务,不能单方面从可能产生的负面影响来定义监管的松紧。金融机构自身的风险控制能力以及风险承受能力也应当作为监管幅度调整的重要参考,进而避免过于从风险控制角度追求“抓大放小”,从而忽视了从行业发展角度“扶优限劣”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26