
大数据、小模式、深影响
我今天想跟大家分享的是大数据以及大数据所延伸出来的商业价值。可能有些人会问这样的问题,我所代表的学院——牛津大学互联网研究院主要的工作职责是什么?我想说,我本身是牛津大学信息哲学与信息伦理学的教授,能在这里和大家一起见证腾讯互联网与社会研究院的成立,是一件非常了不起的事情。因为我认为人类开发数据技术是多年来在古老的地球上开出来的一朵鲜艳的花。其实这个技术在很多年前就已经有了,它深深根植于我们的生活中,它就是哲学。
什么是大数据?大数据是由三个“V”组成的——速度(Velocity)、种类(Variety)和数量(Volume)。现实是大数据一直在变化——速度变得更快,数量变得更多,种类也变得更多样,每一天、每一周都是如此。但是大数据有没有局限?这三个“V”是否会不断地增长?数据会有它的限制吗?
2013年,全中国一共产生了0.8ZB(约8亿TB)的数据,到2020年会变成35ZB,这是快速的增长。而我们的记忆到底能存多少数据?我们的记忆是没有极限的,因为它是动态发展的,这跟数据的增长有关系。
我刚才所讲的是大数据的一些历史。突然有一天我们发现大数据会变成一种资产。什么时候会变成一种大资产呢?如果要选择具体的一天,大概是在2012年,世界经济论坛宣布大数据成为一种新的经济资产,就像货币或者黄金一样。毫无疑问,这种经济的增长速度是非常快的。我从经济论坛上也听到了很多知名的经济学家对于大数据的看法,大家都同意这是一个全新的局面。
现在是什么组成了大数据?不仅仅是速度、种类和数量,还应该有价值(Value)——从三个“V”变成四个
“V”。这四个“V”已经陪伴了我们很长时间,这就是为什么我们今天要来参加这个论坛,讨论大数据。
为什么大数据如此重要呢?对于我这个哲学家来说,大数据的价值是什么?所谓大数据的价值,是以小的格局和小的形式来体现的,这是什么意思呢?我们看到的就是一些小的数据一点点连接在一起,那么到底多大规模的数据才会出现一个可辨别的形式?可以说,你的眼睛无法辨别这种小模式,除非这些小模式连接起来。如果说你有足够的能力,有足够的数据,你才能发现这些数据连在一起或许是一台电话;如果不太了解技术,你可能就看不到这个电话的形式。
可见,大数据是最敏感的,当这些小的敏感线条连接在一起,你马上就会发现“小模式”决定了一半的数据都是垃圾,但是你不知道是哪一半,只有不断地收集这些数据才能做出判断。
首先就是大数据和小模式与我们隐私之间的关系。当然,还会有新的问题,那就是预测。我们发现有足够的数据,再加上智慧小模式的匹配,计算机就知道你会定什么样的行程,在你买之前它已经知道你要买牙膏了。计算机可以告诉我们,今天要做什么,但是它不会告诉我们为什么要这样做。当然还有来自广告的压力,以及那些日益具有说服力的工具,都可以说服你什么是最好的。这些都会影响到我们的自由,对个人而言,这些都是风险。
但是它们并非不可解决的风险,如果我们能够注意到,这些风险就能被解决。当然,这里不仅仅有风险,还有很多优势。当我们谈到大数据的时候,我们要记住大数据是有价值的,它有知识和技术的价值,让我们可以更好地去了解这个世界。从卫生、技术、教育到医疗的研究,帮助我们深化对世界的理解。我们当然也可以去思考大数据给我们带来的经济和商业价值。例如,企业、企业家利用数据可以创造经济价值,确保未来的一代人会比现在的一代人生活得更加美好。因此,我们需要思考大数据在经济上的价值。
今天我们聚集到这里,还要关注大数据的社会价值,也就是怎么样利用大数据提高社会的价值,怎么样改善你的企业运营,怎么样改善交通运输,以及怎么样预测和改善将来的健康问题。大数据是一个非常好的工具,它可以帮助我们改善生活,给我们带来希望。
我们应该利用什么样的战略来获得大数据的好处,避免风险呢?对于大数据,要利用什么样的价值战略呢?我想,要设定这样一个战略是比较容易的,但是实施起来比较难。大数据可以确保我们避免出现伤害,也可以预防伤害或者去除伤害,并创建福祉。
我给大家解释一下这一点,大家可以思考一下医生给他的患者做什么?医生要尽量防止他的患者出现一些伤痛,希望他变得更加健康和强壮。大数据对整个社会来说也可以帮助我们这样做——防止和去除伤痛,而且最重要的是可以去改善成百上千万人的生活。
历史的车轮一直在往前行进,我们无法阻止它往前走,我们确实发挥着作用,不管是大的还是小的,是作为机构还是个人,我们的作用就是为了确保未来社会的顺利发展。而同时数据的价值、量和速度都会增大增强,就有可能会出现信息过载的问题,出现太多的噪音。面对这样的情形,我们可以做什么呢?
这时,我们就要确保这样一个噪音缺口是尽可能小的,才能充分利用大数据的价值,同时又不会给整个社会体系造成过载,这就是我们这个研究院的一个非常重要的责任。
当然我也要强调一下我们本身的哲学理念。大家可以去思考一下大数据有上万亿个,我们有这么多信息,也知道这些是或者不是的问题是不 断增加的。要找到答案,并从中找到信息,我们就必须要去确定正确的问题,也就是要问什么样的问题,才能挤出水分,通过大数据确定小模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01