京公网安备 11010802034615号
经营许可证编号:京B2-20210330
让大数据成为信用建设的“矿产资源”
全国人大代表、浪潮集团有限公司董事长孙丕恕在今年两会期间,提出了依靠大数据、建设征信体系的建议。他希望政府在制定宏观政策,建立征信法律法规的基础上,大力推进政府数据和机构数据等不同数据源的开放和共享,充分利用大数据技术,整合利用好各方数据。此前多年,他一直呼吁提升中国信息安全保护水平、完善中国信息安全保障体系等方面的建设。
在孙丕恕看来,大数据丰富了信用数据的数据源,不再局限于传统的金融领域数据,更基于交易数据、公共事业数据、商业信用、社会信用等多方面的数据来综合评判信用主体。数据的开放和整合是必经之路,大数据技术是有效支撑。
瓶颈问题
大数据在建设社会信用体系方面作用很大,但推进难度也不小,存在一些瓶颈。
孙丕恕:随着电子商务、移动互联等技术的发展,商业社会和人民群众的数据信息成为信用建设的重要“矿产资源”,尤其是大数据技术的应用,极大拓展了数据源的广度和深度,大幅提高了授信效率和信用评价的全面性、完善度等。因此,建设高效全面的社会信用体系需要充分发挥大数据的作用。
经过30多年的发展,中国已形成金融信用信息基础数据库及征信机构,依托央行[微博]也初步建立了个人征信数据库。同时,新兴的互联网公司依靠聚集的大量企业和个人的数据资源,也涉足金融和商业征信领域,成为征信市场的新兴力量。依靠大数据技术融合不同数据源、进而打造信用数据处理能力和信用产品并推广应用,成为创新社会信用体系的突破口。
但是,目前存在的问题是缺乏顶层设计、数据标准不统一、市场监管政策不完善等,导致中国数据市场化程度不高、大数据在征信领域的应用存在诸多障碍,数据的开放和整合以及如何规范管理依然是制约信用体系建设的主要瓶颈。
目前,各级政府部门和金融机构等大型机构组织都在自有数据的基础上,建立行业或机构所用的信用体系,如人民银行[微博]建设的金融征信系统、各级政府部门推动建立的税务、工商、环保、质监等行政信用体系,信用体系的建设呈现九龙治水、多头建设的现状。
这些信用体系目前主要是内部数据的纵向整合,虽然打下了较好的数据基础,但数据孤岛的问题仍未得到解决,各部门、机构的数据仍无法互通,而数据整合缺乏统一标准,采用传统手段也无法充分利用这些信息。
从征信应用上来说,信用数据更需进行横向整合,即跨部门跨行业整合相关数据,并与电商、社交、网络行为等互联网数据相融合,全面完整呈现个体或机构的信用情况。解决这一问题,确定统一的组织和有支撑性的法律是主要途径。信用体系的建设是以数据为基础的。全量、稳定、高质量的数据源是征信体系建设的基础。目前,从数据的分布来看,主要是政府部门掌握的行政记录和调研记录,金融公共事业等掌握的机构内的业务数据以及网络产生的互联网数据。数据的开放和整合是必经之路,大数据技术是有效支撑。
推动数据共享
我国社会信用体系建设,也需要顶层设计。具体做法上,你有怎样的建议?
孙丕恕:具体做法上,首先希望由中央尽快确立中国社会信用体系建设的总体思路,实行“政府启动”,成立征信体系建设的管理机构,明确其管理职责和范围,充分利用大数据技术推动社会信用体系建设的进程,并对建设进程进行统一规划和宏观指导。建立基于大数据构建社会信用的国家规范,建立信用市场管理机制。
要明确数据源的分类和收集规范、信用数据开放和共享规范、征信系统建设机构的职责规范、征信市场的政策指导性文件、信用主体的权益保障规范等相关政策及实施细则,为信用市场的大发展打下坚实的制度基础。制定征信行业的数据标准和行业规范,推进数据开放标准、明确业务规则、数据格式,明确技术平台的建设标准,促进信用数据的整合和征信应用。
推进政府部门数据的开放,具体应该怎么做?
孙丕恕:随着中国电子政务建设的不断发展,各级政府积累了大量与公众生产生活息息相关的数据,并成为社会上最大的数据保有者,掌握着全社会信息资源的80%(其中包括3000余个数据库)。社会迫切需要政府向其开放其所拥有的数据。
政府开放数据有利于构建服务型政府,推动政府透明化进程,提升政府管理水平,通过将政府在管理和服务社会过程中产生或采集的涉及公共信息的数据向社会开放,让社会参与公共数据的再加工和深利用,开发应用产品,能够让数据真正服务于民,提高政府服务社会的能力。
目前,针对各部门的信息孤岛问题,部分先行的省市或区域如北京探索进行其区域内的大数据整合,制定了区域的数据开放共享的规范,但从国家层面上看,尚没有形成较为全面的数据源。因此,建议政府主导,国家尽快出台政府数据开放和共享的规范,管理国家公共财富和数据资产,推动政府数据的分级开放和共享。
具体包括,打通部门内和组织部门间的数据壁垒,逐步向社会免费开放政府业务数据,授权征信机构使用政府业务数据,推动政务数据和征信系统间的数据共享,推动征信体系的全面建设,并打造政府诚信体系和社会诚信体系;划分政府数据的不同级别,对于涉及国家安全、个人隐私、商业机密等的数据在有限范围内使用,其他可推动信用建设、社会治理、经济民生发展的信用主体数据则分级别分范围开放和使用。
金融、电商、公共事业等大型企业掌握的大数据,你认为怎样做到开放共享?
孙丕恕:目前,金融信用信息基础数据库已经为1859.6 万户企业和其他组织及8.2 亿自然人建立了信用档案。这些数据其余第三方机构很难获得。当前央行征信也在逐步建立信用的共享机制,但大部分局限于金融机构内部,没有有效的向社会开放。运营商、水电煤等公共事业等机构内也积累了多年的业务数据,互联网公司收集了大量的用户和企业的信用数据,这些公司或基于垄断保护,或基于商业利益,不将数据开放,而是基于自有的局部数据开展征信服务业务。但限于上述某一数据的征信模型和征信体系来源单一,对于信用主体的信用判定有很大的局限性。
目前,个人征信市场已向民营企业开放,大企业间也在积极谋求数据获取和数据共享的路径,如建立数据开放平台或引入第三方数据交换,但这些都缺乏明确的规范和政策。建立征信产业政策,加快征信市场化进程也势在必行。随着征信主体和数据源的扩张,将逐渐需要更大范围的数据整合和更广泛的应用。这些仅靠政府或某个机构是无法完成的,需要更多市场化征信机构的介入。
具体做法上,建议建立数据开放共享规范,在保障信用主体的合法权益基础上,促进传统金融信贷数据、各电商平台数据、公共事业、运营商等大型机构数据在统一的标准和安全机制下开放共享,打通行业之间、组织之间和地域之间的数据壁垒;鼓励企业通过免费开放、授权共享、数据交换、数据交易等方式免费或有偿地开放和共享内部数据,明确开放数据的范围、机制和路线,鼓励政府企业开放数据与互联网数据共享,打造商业诚信体系;同时推进数据开放和交换平台的建立,建立数据交易和共享的市场化机制,推进征信系统的建设和商业化应用,鼓励第三方企业、研究机构基于数据开放和交易平台进行征信大数据的交换和分析,鼓励基于平台的创新应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09