
你还在为弄不懂Hive、Spark、Pig这些编程语言而抓耳挠腮吗?别担心,一场竞争正让像Hadoop这种复杂的大数据技术能更容易被非专业用户使用,你还能享受它让你发家致富的额外好处。
对,就是你。
几年前,Cowen&Co.的前分析师PeterGoldmacher在一份调查简报中表示,毕竟,你越靠近大数据技术的最终用户,你 的回报就越大。他认为,在大数据的世界,最大的赢家并不是这项技术的供应商,而是那些会用它来创造全新的产业或者瓦解传统业务的公司。
随着时间一天天推移,Goldmacher在2012年做出的预测显得越来越正确。大数据基础的建造者应该得到赞扬,但从中获利最多的是那些与技术营销和销售专家关系最密切的公司,而这些人可能都不知道怎么从一张数据透视表中进行并行运算。
提供解决方法而不是技术
我们已经在一些公司身上见过这种做法,比如JohnDeere,它们运用Hadoop和NoSQL数据库技术开发了非常强大的以数据为导向的应用。当硅谷还把自己当做宇宙的中心时,外面那个更广阔的世界正把大数据用在最有用的地方。
如果不是这样我们才会感到惊讶。正如Goldmacher写的,这一点总是适用于科学技术:正如之前所说,如果我们回顾企业资源计划的历史,超过两 百家公司被创立,在标准商业流程的自动化过程中积累资本。这意味着1990年的投资者只有不到0.5%的可能性选择SAP或者ORCL作为最终赢家。但 是,如果投资者在1990年购买了Dow旗下三十家开展了企业资源计划的公司的股票,那他就能减少35%的一般成本和管理成本,并通过大规模自动化生产将 收益提高五倍,市值也将增加将近八倍。
当然,大数据基础框架服务提供商也会大捞一把,比如Cloudera。Cloudera的市值已经达到几十亿美元,其它一些公司,像DataStax和MongoDB之类,市值也已经超过了十亿美元。
但是从这些公司的软件中获益最多的并不是它们自己,理由如下:
大多数大数据技术是开放性资源,这意味着大家都能采用它,很难从中盈利。
这些技术主要的用户是像Hadoop这种发展中的公司,这些公司对推动技术的采用非常重要,但是它们不愿意花钱。
与消费者关系更密切的公司和资金相对充足的公司更可能用大数据盈利。
根据第一点理由,Cloudera的合伙创始人MikeOlson认为,你不可能靠封闭资源平台获得成功,你也不能仅凭开放的资源建立一个成功 的独立的公司。这使得供应商把所有权和开放资源许可结合起来,从而使收益最大化,但是那些处在行业顶端的公司就不用担心这种情况。
赢家是
显而易见,他们就是应用(具体服务)供应商,他们不向最终用户展示技术的复杂性,只为他们所提供的服务收费。Workday的合伙创始人AneelBhusri几年前就有了这个想法。
McKinsey&Co.详细说明了大数据对不同产业的影响:
这些公司包括我前面前面提到的JohnDeeres,但论起技术上更主流,谁会胜利呢?
答案就是那些最会隐藏产品的复杂性、能让用户轻松操作的公司。
举个例子,微软就符合这种模式。看看他对Azure的机器学习做了什么。Azure机器学习有望消除几乎全部首创费用中与制作、开发和扩展机器学习方法有关的部分,并且可视工作流程和首创模板可以让一般的机器学习任务更简单。
虽然微软有很多可挑剔的地方(我就经常找它的茬),但它在减少复杂计算中的困难这一方面做的比其他任何公司都多。Windows、VisualStudio,还有很多其他的科技使得主流系统管理员和开发者发挥创造性成为可能,Azure机器学习效仿了这些科技。
极客消失了!
但是,我们要进一步考虑。毕竟,虽然大数据给开发者和系统管理员用已经不错了,但真正要解决的问题是这样让大数据更容易为你我这样的普通人使用,Wikibon分析师DaveVellante有了下面这个想法:
商业智能造就了一类分析师,但它始终没有成为主流。我们希望大数据能成为主流。
有一个看起来很适合做这件事的公司就是Adobe。一直以来Adobe都很关注创造性的职业,几年前对Omniture的收购使得Adobe稳步跨越进了大数据世界,但它更关注帮助营销专家获得潜在顾客。
管理大数据的重点不在于巨大的数据量,更多的是关于不断增加的数据来源和数据类型。对一个像Adobe这样的公司来说,为了让营销专家根据广告、图表等内容在极短时间内做出决策,它要搜集和分析来自社会媒体、现金收据等等的各种信息来了解顾客的行为。
该清除杂草了
微软和Adobe仅仅是大数据可能的赢家的两个例子,当然还有很多其他公司可能脱颖而出,希望这里面的有你的公司。
为了达成这个目标,我们需要停止对大数据技术中没什么用的东西的钻研,转而去关注它们能创造的商业价值。这种价值能通过我们使用的应用传递,不会凭空消失。
Olson在接受博世的DirkSlama的采访时说,他和很多仅仅把大数据当做数据的人聊过,他觉得这些人不是理想的工作伙伴,因为他们从根本上来说不是以商业问题为导向的。大数据时代真正的赢家是那些专注于解决实际商业问题的人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29