
作为数据科学家最重要的是什么?Being Curious
视频是海量的,看视频的人也是海量的,无疑解释人们视频消费行的数据也是海量的,优化视频内容以迎合受众的口味是 Ooyala 公司业务的关键内容,其客户中就有 Fox Sports 和 Vice 这样的公司,同时还要帮媒体公司分析他们的受众群体,以一目了然的信息告诉它们发生了什么事。
作为公司的首席数据科学家,两年来 Matt Pasienski 做的事情就是把乱麻一样的数据变成有意义的信息。但随着数据的汹涌而来, Pasienski 仅仅依靠一张物理学 PhD 文凭已经不够了。对他来说,做好这一行,最紧要的就是保持好奇心。“我是个极为刨根追底的人,比起我受过的教育,这点令我更能驾驭这个工作。”他这样说
Mr. Pasienski:我觉得人人都能做这个工做,只要你有一个特点——强烈的好奇心。OK, 你需要过硬的数学和计算技术能力,但最成功的数据人才都有观察思考的习惯。(大部分还爱钻研冷知识)。如果我做招聘的话,我不会问他数学学科背景的问题,但会问上星期学到的最有趣的东西是什么。如果答案令人满意的话,就说明这个面试者天性就爱探究,这就是你要找的人才。
我希望营销人员能理解他们本身就有必要成为数据科学家。他们需要陈述数据,理解数据。只有这样他们才有可能做出周全、或者说有数据支持的决策,使营销成本效益最大化以及做出更好的产品。还有,我觉得营销人员在传播过程中不是那么善于运用硬数据来增强信息的共识性和说服力。一个基于真识评估数据的图表或统计表有利于他们屏蔽噪音。
甩掉没用的冗余信息。大部分数据科学家都专注于事实和数字,但营销行业里最难做的不仅是从数据中挖掘出意义,还要知道如何表达数据结果。你得提取出有效信息,搞清楚这些信息放在一起有何意义,并凭借这些数据讲出好故事来,这才是对营销人员来说最有价值的。也许你制了 100 张图表才找出那个能简单讲明白故事的那个,可这才是数据最终发挥出价值的地方。
FTC举行了关于物联网隐私问题解决方案的谈话。你认为这个时候政府该监管可追踪设备(比如智能冰箱)么?公司应该如何采集和使用联网设备产生的数据?
政府应该做一个创新者,制定一个供大家遵守的规范。缺少统一标准的话受伤的还是企业。一个行业突然起来,达成共识总是需要一段时间。
我正在观察一天当中,人们什么时间用平板最多,结果发现晚上是个高峰期。我的工作中就好的地方就是你总能有意想不到的发现。而找到结果的方式之一就是亲自去观察、研究。很多很酷的东西都是从持之以恒的挖掘来的,我喜欢这个过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04