京公网安备 11010802034615号
经营许可证编号:京B2-20210330
滴滴打车“滴米调度室”上线 大数据优化出行体验
12月23日,滴滴打车方面透露,经过两个多月的公测,滴滴的“滴米”调度系统正式上线。该系统可以有效规避司机“挑肥拣瘦”、最大程度让乘客订单呼叫都得到满足,让乘客获得更好的出行体验。
据介绍,依靠“滴米”系统,滴滴打车成功地保证了用户“打上车”的基本需求,即便在今年打车软件竞争激烈的“双十二”,滴滴用户打车成功率也达到了90%。
“滴滴的核心是大数据”,滴滴打车CTO张博告诉记者,“滴米调度系统正是基于大数据优势而生,通过这些优势去创造更多的社会价值是滴滴一直追求的”。
此外,张博还透露,滴滴打车很快将采用技术手段,通过“中间号”的方式以双向保护司机和乘客的手机号隐私,这个“中间号”大概只能在半小时内打通,让乘客投诉司机不规范等行为时无后顾之忧。
“保证用户打到车”
“作为滴滴公司重要的创新之一,‘滴米’极大的优化城市出租车的调度效率,进一步提升消费者的打车成功率,从而为消费者带来更好的出行体验。”12月23日,滴滴公司CTO张博在媒体沟通会上说。
据了解,“滴米”系统是滴滴公司依靠大数据的掌握,而首创的一种调度方式。滴滴公司招募了世界上最出色的大数据、算法专家,组建了一支超过800人的技术团队,并与一些高校和科研机构合作,推出相当于“调度室”功能的滴米系统。
“‘滴米’在司机端的体现是一种虚拟积分。对于司机来说,行驶里程多、道路状况好的‘好单’会扣除滴米,而行驶里程较少、道路状况拥堵的“坏单”的司机则会奖励‘滴米’。如果乘客发出叫车需求,而此时有两辆车与乘客的距离是一样的,那么司机谁的‘滴米’多,就是谁获得这个订单。这就鼓励司机为接到‘好单’而多累积‘滴米’。张博说。
张博表示,滴滴之所以推出“滴米”,主要是期望解决传统出租车行业运营规则中的通病——出租车行业原有的调度系统多年来仍作用有限,并不能解决司机拒载的问题。即便在打车软件出现后,也出现了“好单”都在抢,但“差单”却无人接的问题,司机间都是在比拼手机速度和网络速度。
据悉,今年10月份,滴滴首次推出“滴米”系统进行公测,两个月来取得了良好的效果。除了引导司机更好地投入到打车服务中,满足乘客最基本的“打上车”需求,“滴米系统更重要的社会属性在于,有效地调度了超过百万人的司机群体,推动出租车行业的不健康竞争向良性竞争转变,极大提升了城市出租车调度效率。
“好功能受益大数据”
张博向记者介绍,滴滴打车之所以能够推出滴米系统,这与公司长期积累的大数据优势有着莫大的关系。
据悉,在滴米系统中,系统首先要评判一个订单价值的高低,这就需要大量数据的支撑。在订单产生的时候,系统会第一时间根据订单的实际情况(路程远近、拥堵状况、历史订单)来预估这个订单的价值。如果这是一个不受司机欢迎的订单,系统就会以奖励滴米的方式激励司机抢单。如果这是一个非常受司机欢迎的订单,系统就会扣除抢单司机的滴米。“滴米就像滴滴系统中的虚拟货币,在发放的环节,大数据发挥了很大作用。”
在张博看来,正因为大数据的优势,滴米调度室与传统的出租车调度有了根本区别。“比如说,滴米调度系统可以知道哪一位司机在哪一个时刻接了一个什么样的订单,可以判断这个订单的价值高低,这是传统的出租车调度系统不具备的”,张博指出,“更重要的是,我们能够通过大数据的不断积累,掌控未来订单的分配。我们不断的记录司机的行为,司机是接了好的订单还是差的订单,是不是提供了好的服务,都会被记录下来。然后我们通过这些记录,去评估司机的贡献,反过来再让司机收益”。
在日常的出行中,司机和乘客在地域上的分布往往是不均匀的,一些地方乘客打不到车,一些地方司机拉不到客。而透过大数据,乘客的需求却可以被预测,张博向记者介绍,“比如晚上10点至11点左右,北京三里屯的乘客数量会激增。这样的例子不胜枚举,我们可以向司机提供全天的订单分布预测情况,根据司机所处的位置,提示司机在未来多长时间会遇到订单数量较少的情况,或提醒司机提早前往订单数量较多的地域。”
而在这样的预测与提醒下,有50%的司机愿意听从提醒前往那个目的地,有80%的司机认为这个信息有用。“这就是大数据创造的社会价值,是滴滴一直追求的。随着数据的不断积累,我们对用户出行的理解也会越来越深,它的价值也会不断放大”,张博强调。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19