
scrapy一个开源和协作的框架,最初的设计目的为:页面抓取(更准确来说是网络抓取),因此scrapy能够以简便、快捷·、可扩展的方式从网站中提取所需的信息。现阶段scrapy的应用十分广泛,能够用于挖掘、监测和自动化测试等许多领域,也可以被用在API所返回的数据,就像:Amazon Associates Web Services,或者通用的网络爬虫等方面。 scrapy是基于twisted框架而开发出来的,twisted是一个流行的事件驱动的python网络框架,所以通过利用一种非阻塞(又被称为异步)的代码来实现并发。
一、scrapy架构
scrapy框架主要由以下·六大组件组成:调试器(Scheduler)、下载器(Downloader)、爬虫(Spider)、中间件(Middleware)、实体管道(Item Pipeline)和Scrapy引擎(Scrapy Engine)
1、Scrapy Engine(引擎): 主要负责控制所有组件间的数据流,并在相应动作触发事件时进行处理。
2、Scheduler(调度器): 调度器从引擎接受请求,并将这些请求放入队列中,并在之后返回给引擎。
3、Downloader(下载器): 下载器负责根据引擎的请求,获取页面数据并反应给引擎,之后提供给spider。
4、Spider(爬虫): 每一个spider负责处理一个(或一些)特定网站,Spider发出请求,并对引擎返回给它下载器响应数据进行处理,以items和规则内的数据请求(urls)返回给引擎。
5、Item Pipeline(管道): Item Pipeline负责处理被spider提取出来的数据,并将数据持久化。
6、Downloader Middlewares(下载中间件): 下载器中间件是在引擎及下载器之间的交互组件,也被称为特定钩子(specific hook),能够代替接收请求、处理数据的下载, 并将结果提供给引擎。
7、Spider Middlewares(Spider中间件): Spider中间件是在引擎及Spider之间的特定钩子(specific hook),处理spider的输入(response)和输出(items及requests)。 其提供了一个简便的机制,通过插入自定义代码来扩展Scrapy功能。
二、scrapy安装
windows环境配置
scrapy依赖包(或者到官网单独下载各文件安装):
1.lxml: pip install wheel
2.zope.interface:pip install zope.interface-4.3.3-cp35-cp35m-win_amd64.whl
3.pyOpenSSL:pip install pyOpenSSL
4.Twisted:pip install Twisted
5.Scrapy:pip install Scrapy
如果还没安装,Anoconda+Pycharm+Scrapy Anaconda,先到http://www.continuum.io/downloads下载对应平台的包安装。如果已经安装,直接通过conda命令安装Scrapy。conda install scrapy
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09