
scrapy一个开源和协作的框架,最初的设计目的为:页面抓取(更准确来说是网络抓取),因此scrapy能够以简便、快捷·、可扩展的方式从网站中提取所需的信息。现阶段scrapy的应用十分广泛,能够用于挖掘、监测和自动化测试等许多领域,也可以被用在API所返回的数据,就像:Amazon Associates Web Services,或者通用的网络爬虫等方面。 scrapy是基于twisted框架而开发出来的,twisted是一个流行的事件驱动的python网络框架,所以通过利用一种非阻塞(又被称为异步)的代码来实现并发。
一、scrapy架构
scrapy框架主要由以下·六大组件组成:调试器(Scheduler)、下载器(Downloader)、爬虫(Spider)、中间件(Middleware)、实体管道(Item Pipeline)和Scrapy引擎(Scrapy Engine)
1、Scrapy Engine(引擎): 主要负责控制所有组件间的数据流,并在相应动作触发事件时进行处理。
2、Scheduler(调度器): 调度器从引擎接受请求,并将这些请求放入队列中,并在之后返回给引擎。
3、Downloader(下载器): 下载器负责根据引擎的请求,获取页面数据并反应给引擎,之后提供给spider。
4、Spider(爬虫): 每一个spider负责处理一个(或一些)特定网站,Spider发出请求,并对引擎返回给它下载器响应数据进行处理,以items和规则内的数据请求(urls)返回给引擎。
5、Item Pipeline(管道): Item Pipeline负责处理被spider提取出来的数据,并将数据持久化。
6、Downloader Middlewares(下载中间件): 下载器中间件是在引擎及下载器之间的交互组件,也被称为特定钩子(specific hook),能够代替接收请求、处理数据的下载, 并将结果提供给引擎。
7、Spider Middlewares(Spider中间件): Spider中间件是在引擎及Spider之间的特定钩子(specific hook),处理spider的输入(response)和输出(items及requests)。 其提供了一个简便的机制,通过插入自定义代码来扩展Scrapy功能。
二、scrapy安装
windows环境配置
scrapy依赖包(或者到官网单独下载各文件安装):
1.lxml: pip install wheel
2.zope.interface:pip install zope.interface-4.3.3-cp35-cp35m-win_amd64.whl
3.pyOpenSSL:pip install pyOpenSSL
4.Twisted:pip install Twisted
5.Scrapy:pip install Scrapy
如果还没安装,Anoconda+Pycharm+Scrapy Anaconda,先到http://www.continuum.io/downloads下载对应平台的包安装。如果已经安装,直接通过conda命令安装Scrapy。conda install scrapy
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18