京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分布式存储,采用分布式的系统结构,将大量的普通服务器,通过网络互联,作为一个整体,利用位置服务器定位存储信息。
1.高可靠性:重点指分布式系统数据安全方面的容灾与备份,数据可靠不丢失。在分布式存储的容灾中,一个重要的手段就是多时间点快照技术,这样用户生产系统可以实现在一定时间间隔内对各版本数据的保存。而且,多时间点快照技术,能够支持同时提取多个时间点的样本,并且同时进行恢复。这一功能对于故障重现也很有帮助,可帮助进行分析和研究,避免类似灾难的再次发生。多时间点快照,周期增量复制等技术为分布式存储的高可靠性提供了保障。
2.高扩展性:分布式存储系统通过对集群服务器规模进行扩展,从而使系统存储容量、计算和性能得到提高。随着业务量的增大,对底层分布式存储系统的性能要求也随之增高。衡量可扩展性的要求集群具有线性的可扩展性,系统整体性能和服务器数量是线性关系。分布式存储有着合理的分布式架构,能够预估并且弹性扩展计算、存储容量和性能。
3.数据一致性:传统的存储架构是使用RAID模式来保证数据的可靠性,而分布式存储则不同,它采用了多副本备份机制,而且多个副本之间保持数据一致性,在存储数据之前,分布式存储对数据进行了分片,并将分片后的数据按照一定的规则在集群节点上进行保存。为了保证多个数据副本之间的一致性,分布式存储通常采用的方法是:一个副本写入,而其余多个副本读取。在数据读取失败时候,系统则可以从其他副本读取数据,进而重新写入该副本,并进行恢复,从而保证了副本的总数的一致性;当数据长时间处于不一致状态时,系统会自动进行数据的重建和恢复,将对业务的影响降到最低。
4.高性能:系统的吞吐量和系统的响应延迟这两项指标,经常被用来衡量分布式存储系统的性能。通常高性能的分布式存储,能够高效地管理读缓存和写缓存,并且能够自动进行分级存储。分布式存储是通过把热点区域内数据映射到高速存储中,以此来提高系统响应的速度;如果这些区域不再是热点,那么存储系统就会将它们从高速存储中移除。而写缓存技术则是配合高速存储,来使得整体存储的性能有显著提高,按一定的策略,先将数据写入高速存储,再在适当的时间里进行同步落盘。
高稳定性:这是一个综合指标,考核分布式 存储系统的整体健壮性,任何异常,系统都能坦然面对,系统稳定性越高越好。
高安全性:由于使用网络进行松耦合链接,分布式存储能够允许高速存储和低速存储分开部署,或者以任意比例混布。在业务环境不可预测,或者应用过于敏捷的情况下,分科技将分层存储的优势发挥到最佳。而且分布式存储系统不受恶意访问和攻击,能够保护存储数据不被窃取。
高可用性:分布式存储系统在面对各种异常时,都可以提供正常服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21