
全面解读云计算、大数据、AI 对数据中心的影响
数据中心行业发展正面临前所未有的复杂环境,网络应用种类和数量的极大丰富催生了海量数据,人工智能的兴起带来了高密度计算,这些都给数据中心这一互联网基础设施提出了更多和更高的要求。今天,我们已经无法回避"ABC"究竟给"D"带来哪些影响这一问题了。
"ABC"正在对"D"产生深刻影响!
这并不是一句绕口令。以A(AI,人工智能)、B(Big Data,大数据)、C(Cloud,云计算)为代表的新一代信息技术的兴起,正在推动D(DC,数据中心)变革。
数据中心行业发展正面临前所未有的复杂环境,网络应用种类和数量的极大丰富催生了海量数据,人工智能的兴起带来了高密度计算,这些都给数据中心这一互联网基础设施提出了更多和更高的要求。今天,我们已经无法回避"ABC"究竟给"D"带来哪些影响这一问题了。
"互联网技术相面师"、中国信息通信研究院云计算与大数据所所长何宝宏,拥有二十余年的互联网技术研究经验,著有的《互联网的基因》一书中准确预测了互联网、大数据、区块链等技术的发展曲线,牵头成立了开放数据中心委员会(ODCC),力推天蝎服务器、 模块化数据中心的标准制定和市场应用。
何宝宏博士判断数据中心产业正在迎来它的"黄金十年".了解"ABC"的技术发展趋势,以及它们对于数据中心产业带来的具体影响,将有利于数据中心企业看清挑战,把握机遇。
在即将于2017年12月20-22日举办的"第十二届中国IDC产业年度大典"上,何宝宏博士将在"预见互联网的2020"思享会上,分享其对数据中心产业发展的预测,同时也将详细解读云计算、大数据、人工智能、区块链等技术发展的最新趋势。
"A"对"D"的影响
AI正在以超出我们预想的速度发展。"数据、硬件、算法是支撑今天AI复兴的三大重要力量。"众所周知,AI并不是一个年轻的技术,上世纪五十年代就有了这个名词。何宝宏认为,新数据的新应用、老硬件的新应用,以及老算法的新改进,为AI注入了全新的发展动力。很典型的现象就是,AI在机器视觉和语音识别上实现了巨大的突破。
AI的发展离不开"算力",可以预见,随着AI概念的兴起,以及越来越多的AI应用的落地,业界对高速计算的需求日渐增多,GPU加速计算服务器的规模将持续增长。"随着GPU加速计算服务器在数据中心中的部署规模的增大,数据中心无论是内部设计还是布局上都将发生一系列的变化。"何宝宏同时表示,目前CPU加速计算服务器产生的热能是传统CPU的数倍,如果说一个机架能够放十几台普通服务器,那么同样空间下只能放两台GPU服务器,导致这一情况的主要原因就是散热。
"虽然现在这个问题并不是很凸显,目前大家也有各种办法能够应对,但是随着容量的增加,这将会成为主要矛盾,成为限制产业发展的瓶颈。"何宝宏认定,要想适应未来AI的发展,数据中心的散热技术必须变革。而在目前风冷的效能已经最大化的情况下,"液冷"无疑是一个值得重点关注的新方向。
除了在给数据中心带来挑战的同时,AI的兴起也有利于数据中心自身的发展,目前,已经有企业探索将AI技术应用到数据中心的运维中,从自动化运维升级到智能运维。
"B"对"D"的影响
"三年后的大数据,将是今天的云计算。"在大数据走过了热热闹闹的概念期后,大数据正在加速落地。何宝宏预计,未来的2-3年,大数据将要过一段"紧日子".不过随后就将迎来爆发式增长,将会像今天的云计算市场这样,企业和整个产业的规模不断扩大,越来越多的企业开始实现盈利,与大数据有关的应用将渗入到各行各业中去。
何宝宏预测,3年里大数据"男耕女织"的时代不会结束,今天企业拥有的大数据,很大一部分都是自己产出的,或者是合作的客户的。而如果大数据要实现发展,那么就必须结束这种模式,更多的数据需要流通起来。同时,业界也要更多地关注数据的温度,热数据、冷数据和温数据对于存储的需求是不一样的。
这其实就关系到了数据中心产业。数据规模的不断增大,会促使数据中心向以存储和分析数据为中心的模式转变。而这无疑也对数据中心的扩展性、可用性等提出新的要求。
其实,技术的边界正在变得模糊,无论是人工智能还是大数据,乃至云计算,都要求数据中心构建一个更加灵活和强健的环境。
"C"对"D"的影响
在网络全面云化的趋势下,数据中心必须全面云化。何宝宏认为,"数据中心必须是软件定义的,必须模块化、开放以及标准化。"
今天,已经不会有人去强调云的重要性,也因为云已经成为我们生活中的一部分,并且比重将越来越大。在何宝宏看来,云化是数据中心的必然演进方向,不过目前业界在此方便的探索仍然无法满足云计算业务发展的需要。
以云计算为代表的新一代信息技术和应用的发展,将促使数据中心的成本不断提高,因而数据中心必须要实现标准化。换一句话说,作为所有互联网应用的基础设施,数据中心是要"首先"标准化,这样才能够支撑上层的应用更好地发展。
软件定义网络的全面兴起,推动了白盒交换机的兴起。随着软件开源成为一种趋势,硬件也在走向开源。未来,开源的系统加上开源的硬件,将助推数据中心产业的变革。不过何宝宏认为,数据中心的变革不会是颠覆式的,而是演进式的,因为越来越多的网络资产承载在数据中心上。
随着边缘计算的兴起,边缘数据中心的概念也值得关注。何宝宏认为,虽然具体的形式有待业界去讨论和验证,但是必须要有数据在中心支撑边缘计算的发展,而未来边缘智能也将会兴起。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22