京公网安备 11010802034615号
经营许可证编号:京B2-20210330
全面解读云计算、大数据、AI 对数据中心的影响
数据中心行业发展正面临前所未有的复杂环境,网络应用种类和数量的极大丰富催生了海量数据,人工智能的兴起带来了高密度计算,这些都给数据中心这一互联网基础设施提出了更多和更高的要求。今天,我们已经无法回避"ABC"究竟给"D"带来哪些影响这一问题了。
"ABC"正在对"D"产生深刻影响!
这并不是一句绕口令。以A(AI,人工智能)、B(Big Data,大数据)、C(Cloud,云计算)为代表的新一代信息技术的兴起,正在推动D(DC,数据中心)变革。
数据中心行业发展正面临前所未有的复杂环境,网络应用种类和数量的极大丰富催生了海量数据,人工智能的兴起带来了高密度计算,这些都给数据中心这一互联网基础设施提出了更多和更高的要求。今天,我们已经无法回避"ABC"究竟给"D"带来哪些影响这一问题了。
"互联网技术相面师"、中国信息通信研究院云计算与大数据所所长何宝宏,拥有二十余年的互联网技术研究经验,著有的《互联网的基因》一书中准确预测了互联网、大数据、区块链等技术的发展曲线,牵头成立了开放数据中心委员会(ODCC),力推天蝎服务器、 模块化数据中心的标准制定和市场应用。
何宝宏博士判断数据中心产业正在迎来它的"黄金十年".了解"ABC"的技术发展趋势,以及它们对于数据中心产业带来的具体影响,将有利于数据中心企业看清挑战,把握机遇。
在即将于2017年12月20-22日举办的"第十二届中国IDC产业年度大典"上,何宝宏博士将在"预见互联网的2020"思享会上,分享其对数据中心产业发展的预测,同时也将详细解读云计算、大数据、人工智能、区块链等技术发展的最新趋势。
"A"对"D"的影响
AI正在以超出我们预想的速度发展。"数据、硬件、算法是支撑今天AI复兴的三大重要力量。"众所周知,AI并不是一个年轻的技术,上世纪五十年代就有了这个名词。何宝宏认为,新数据的新应用、老硬件的新应用,以及老算法的新改进,为AI注入了全新的发展动力。很典型的现象就是,AI在机器视觉和语音识别上实现了巨大的突破。
AI的发展离不开"算力",可以预见,随着AI概念的兴起,以及越来越多的AI应用的落地,业界对高速计算的需求日渐增多,GPU加速计算服务器的规模将持续增长。"随着GPU加速计算服务器在数据中心中的部署规模的增大,数据中心无论是内部设计还是布局上都将发生一系列的变化。"何宝宏同时表示,目前CPU加速计算服务器产生的热能是传统CPU的数倍,如果说一个机架能够放十几台普通服务器,那么同样空间下只能放两台GPU服务器,导致这一情况的主要原因就是散热。
"虽然现在这个问题并不是很凸显,目前大家也有各种办法能够应对,但是随着容量的增加,这将会成为主要矛盾,成为限制产业发展的瓶颈。"何宝宏认定,要想适应未来AI的发展,数据中心的散热技术必须变革。而在目前风冷的效能已经最大化的情况下,"液冷"无疑是一个值得重点关注的新方向。
除了在给数据中心带来挑战的同时,AI的兴起也有利于数据中心自身的发展,目前,已经有企业探索将AI技术应用到数据中心的运维中,从自动化运维升级到智能运维。
"B"对"D"的影响
"三年后的大数据,将是今天的云计算。"在大数据走过了热热闹闹的概念期后,大数据正在加速落地。何宝宏预计,未来的2-3年,大数据将要过一段"紧日子".不过随后就将迎来爆发式增长,将会像今天的云计算市场这样,企业和整个产业的规模不断扩大,越来越多的企业开始实现盈利,与大数据有关的应用将渗入到各行各业中去。
何宝宏预测,3年里大数据"男耕女织"的时代不会结束,今天企业拥有的大数据,很大一部分都是自己产出的,或者是合作的客户的。而如果大数据要实现发展,那么就必须结束这种模式,更多的数据需要流通起来。同时,业界也要更多地关注数据的温度,热数据、冷数据和温数据对于存储的需求是不一样的。
这其实就关系到了数据中心产业。数据规模的不断增大,会促使数据中心向以存储和分析数据为中心的模式转变。而这无疑也对数据中心的扩展性、可用性等提出新的要求。
其实,技术的边界正在变得模糊,无论是人工智能还是大数据,乃至云计算,都要求数据中心构建一个更加灵活和强健的环境。
"C"对"D"的影响
在网络全面云化的趋势下,数据中心必须全面云化。何宝宏认为,"数据中心必须是软件定义的,必须模块化、开放以及标准化。"
今天,已经不会有人去强调云的重要性,也因为云已经成为我们生活中的一部分,并且比重将越来越大。在何宝宏看来,云化是数据中心的必然演进方向,不过目前业界在此方便的探索仍然无法满足云计算业务发展的需要。
以云计算为代表的新一代信息技术和应用的发展,将促使数据中心的成本不断提高,因而数据中心必须要实现标准化。换一句话说,作为所有互联网应用的基础设施,数据中心是要"首先"标准化,这样才能够支撑上层的应用更好地发展。
软件定义网络的全面兴起,推动了白盒交换机的兴起。随着软件开源成为一种趋势,硬件也在走向开源。未来,开源的系统加上开源的硬件,将助推数据中心产业的变革。不过何宝宏认为,数据中心的变革不会是颠覆式的,而是演进式的,因为越来越多的网络资产承载在数据中心上。
随着边缘计算的兴起,边缘数据中心的概念也值得关注。何宝宏认为,虽然具体的形式有待业界去讨论和验证,但是必须要有数据在中心支撑边缘计算的发展,而未来边缘智能也将会兴起。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08