
六分钟动画揭开 AI 的神秘面纱(附视频中字)
针对不方面开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:
每天,相当多的人都在科技发展的支配下。实际上,很少有人明白当中深意。
人工智能
人工智能,比如HAL9000和偏执的机器人Marvin。(注:两者分别为科幻小说《太空漫游》和《银河系漫游指南》中的人工智能)
多亏了书和电影,每一代都有一个属于自己的幻想世界。这个世界也许被机器人主宰,或者由机器人提供服务。我们已经习惯于期待这样一个未来:可以避开交通的飞行汽车,以及平日里由机器人女仆为我们准备晚餐。
但是如果AI时代已经来临的话,为什么我们的生活不像"杰森一家"那样呢?(注:杰特森一家(The Jetsons)描绘未来世界的美国动画片)
首先,那是动画片。如果你们有浏览过Netflix的电影推荐,或者让Alexa点一份披萨(Alexa: Amazon的语音助手)。那么,你和人工智能的互动可能比你意识到的要还多。
那就对了。AI所设计的目的就是,让你不会意识到背后是计算机发号施令。这同样也帮助我们理解什么是AI,什么不是AI。
听起来有些复杂,用基本术语来说,AI属于计算机科学的一个广泛领域。它让机器看起来拥有人的智慧。因此不仅仅是对计算机进行编程,让它通过遵守交通信号驾驶车辆。同时程序也学会展示出人类具有的行为,比如路怒症。(注:路怒症指机动车驾驶人带着紧张愤怒的情绪开车)
虽然感觉有些吓人,但这项技术并不是最近才出现的。实际上,在过去的半个世纪这个超前的想法已经出现了。
"人工智能"这个术语是在1956年, 由达特茅斯学院的John McCarthy教授提出。
他召集了一群计算机科学家和数学家来研究通过反复实验的方法,机器是否可以像小孩子一样学习,从而发展出形式推理(formal reasoning)的能力。
项目提议中提到他们将弄清楚如何让机器使用语言,形成抽象概念和观点,以解决留给人类的问题,同时实现机器的自我提升。
这是六十多年前了。之后AI大部分都只存在于大学教室和超级机密的实验室中。但如今正在发生改变,就像那些指数曲线一样,很难说清一条缓慢爬升的曲线,什么时候就会像火箭一样一飞冲天。
但是在过去的几年,一些因素使得AI即将成为下一个大热门。
首先,每分钟都在产生大量数据。
实际上世界上90%的数据都在过去的两年中产生。如今归功于处理速度的提升,计算机能够更快地理解所有这些信息。因此科技巨头和风险投资家开始投身于AI,为市场注入资本和新的应用。
很快 "人工智能"会变得不那么"人工”,但更加"智能”。
那么问题来了。你是否要为终结者电影中的情节发生在现实生活中发做好准备,并不是。
别再想着机器人了,当我们提到AI时机器人只不过是一层壳。它隐藏了究竟是什么在驱动着科技,也就是说AI可以表现为许多不同形式。
让我们来深究一下。首先是机器人,这些机器人基于文本 并且异常强大,但是同样也有局限。比如让天气机器人预报天气时,它会告诉你局部多云,最高温度为57华氏度(约13.8摄氏度)。但当问它现在的东京时间时,它就不清楚了。因为它仅仅被编程为从特定的数据源中调取天气信息。
自然语言处理让这些机器人变的更加复杂。
当你问Siri或者Cortana最近的加油站在哪儿时,这只是把你的声音转成文字,再把文字输进一个搜索引擎,之后把搜索的答案以人类语法念出来。换句话来说就是,你无需用代码来表达。
另一个要提到的就是机器学习。事实上这是AI领域中最让人兴奋的部分。就像人类一样,机器保留信息并随着时间变得越来越聪明。但是和人类不一样的是,它并不会由于短暂失忆、信息过载、睡眠不足以及注意力分散而受到影响。
机器究竟如何学习?
对人类而言,区分猫和狗是很简单的,但对计算机来说并非如此。如果只考虑外形,猫和狗的区别并不明显。你可以说猫耳朵是尖的,而狗耳朵是下垂的,但是这些规则不是通用的。尾巴长度、皮毛质地和颜色存在很多可能。也就是说需要手动编程一些冗长的规则,来帮助计算机来进行区分。
要记住,机器学习能够让机器像人一样学习。就像幼儿一样,机器需要通过经验来学习。
借助机器学习,程序能够通过分析数千个样例来构建算法。然后根据算法是否达到目标来进行调整,随着时间的推移程序变得越来越聪明。
从而类似IBM Watson的机器人就能够诊断癌症,创作古典交响曲,或者在危险边缘(美国的知识类问答节目)中碾压Ken Jennings(危险边缘的常胜将军)。
有些程序甚至模仿人脑的结构,加之神经网络来更好地帮助人类。如今机器能够解决问题。
AI可能带来的后果
人类很早就在思考AI可能带来的后果。在脑海中想象机器对人类实行报复,或者给人类社会带来毁灭性破坏。
然而,更合理且更迫在眉睫的问题是:
AI会对你的工作带来什么影响?
它会像淘汰你的工作吗?
就像工业革命,这不是人类对抗机器,而是人类联合机器共同解决问题。
重点是让AI帮助你在更短时间内完成更多内容,它处理你工作中的重复性任务,让你处理策略和人际关系的问题。
从而人类可以去做真正擅长的事,”做人类" (而不是机器)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22