
在大数据时代下,大数据在金融领域的应用也变得日益普遍,但是有一点值得注意,那就是大企业与小微企业的信息结构存在显着不同。大企业经营规范、信息披露较充分且可信度高、信息质量审核相对容易,因此适用于传统的基于财务报表与抵押资产质量的信贷审核方法;而小微企业的经营管理水平差异较大、市场上信息披露较少,且我国很多小微企业缺乏合规的、真实可信的财务报表,因此审核小微企业资质、搜寻小微企业信息需付出的人力、物力成本较高,很多银行都提出了许多创新的办法,例如,看小微企业的“三表”(水表、电表、纳税表)等。
如果不改善信息结构,可覆盖风险的有效途径只剩下提高利率与要求抵押担保。在当前利率非完全市场化与抵押担保品欠缺的情况下,采用传统信贷技术从事小微金融,需付出的边际成本与服务大企业相差不大。在信贷供给资源仍显稀缺的情形之下,银行具有提高授信门槛以迫使高风险客户退出信贷市场的动机,这就是“二八定律”和银行针对小微企业客户实施信贷配给背后的原因。银行服务80% 低端客户所带来的利润微乎其微,不如将这部分客户赶出市场,全力支持20% 的高端客户。
大数据正在尝试打破这种成本与收益难以均衡的僵局。大数据与信贷业务结合的核心优势在于重塑信息结构、削减业务成本。电子商务平台与社交化网络的发展积累了海量数据,对网络大数据进行挖掘所得到的逻辑与规律信息,要比现实中发布的企业数据更具真实性。
大数据与金融行业的融合催生出的新产业——互联网金融——完全不同于信用中介模式,甚至从匹配资金供需效率的角度来说已超越了信用中介模式。以阿里金融为例,囊括了平台商户的历史交易数据、信用记录、客户评价等内部数据,以及纳税记录、海关记录等外部数据的“大数据”,颠覆了银企间信息不对称的格局。信息结构的改善,令金融机构可以清晰地甄别出企业的资质,信息不对称得以解决。激励金融机构为优质的小微客户提供信贷服务,“信贷配给”发生的基础不复存在。同时,运算能力强大的电子系统将客户拓展的边际成本削减至几乎为零,“二八定律”成立的前提也随之消失,在大数据时代,金融机构有机会从80% 的低端客户身上获取不菲的价值。
改变风险管理上的激励不相容
在中国传统金融机构中,现阶段还存在开展小微金融业务在风险管理上的激励不相容问题。在银行业不断改革发展的过程中,商业银行普遍强化了信用风险约束机制,但与其相匹配的激励机制却没有相应建立,因此客户经理普遍存在“贷不如不贷,多贷不如少贷”的“惜贷心理。不仅如此,由于贷后持续监督的成本过高,客户经理缺乏有效的显性激励来控制风险,导致小微企业贷款的社会总体违约率上升,相应地给予银行小微金融业务违约风险大的不良预期。如果加上担忧信息不对称情况下可能出现的逆向选择与道德风险,银行会选择收紧针对小微企业的信贷供给,造成小微企业信贷市场不均衡。
大数据时代里,信息结构的改变,直接驱动风险控制理念发生根本性变化。原来是要求补偿覆盖风险损失(无论是高利率还是抵押担保要求),现在变为持续考核与监控企业稳健经营、创造现金及还款的能力;原来集中考察“硬信息”(资产负债表等),现在变为重点考察“软信息”(经营和交易数据、单据等)。从依赖人力转变到依赖电子系统,风险管理的激励不相容问题不再成为制约小微金融发展的桎梏。信贷理念的变化契合了解决小微企业融资难题的思路。
不仅如此,基于大数据挖掘的系统处理与实时监控显着缩短了业务流程,提升了信贷业务效率,具有符合小微企业贷款需求“短、频、快”特点的灵活性。例如,阿里金融推出的“按日计息、随借随还”的信贷产品,依托信息技术的强大保障,既解决了客户的短期资金需求,又有效提高了资金的周转速度,通过金融创新为企业增加了价值。
开放与真实的数据
中国潜在的大数据资源非常丰富,从电信、金融、社保、房地产、医疗、征信体系等部门到电子商务平台、社交网站等,覆盖广泛。然而,现阶段所披露的数据仅仅是局部的、碎片化的,尤其是对评估小微企业信用至关重要的社会征信体系,仍旧是区域割裂、透明度较低。因此,获取信息的高成本无疑阻碍了小微金融的发展。
以典型的P2P 模式为例,借助后发优势,我国P2P 借贷平台的交易流程与机制完全与国际先进水平接轨,但在信用评估时经常面临公开信息不足的窘境。在健全、完善、公开的征信系统以及成熟的信用评级市场的保障下,美国P2P 平台能够将信用评估模块完全外包。信息生态是决定P2P 机构在未来能有多大施展的关键制约因素。
数据的可得性是大数据得以应用的前提,而数据的真实性同样具有关键意义。在中国现行税制背景下,小微企业为了规避税费或争取优惠政策而形成的财务报表,无法真实反映企业的经营状况。不仅如此,投机性的财务造假在信贷市场上起到了“劣币驱除良币”的效应,将财务状况良好、诚信经营的企业逐渐挤出市场。这种无效数据的大量生产与无序流动,严重扰乱了大数据时代的正常秩序,也对数据挖掘产生了恶劣影响。
大数据时代下,“数据+ 金融”模式已经悄然兴起,尤其是在金融领域,逐渐流行开来,同已有的解决小微企业融资问题的诸多途径在本质上是类似的,都是为了创造一个低成本的、信息完全对称的市场结构。只有社会公共数据信息真正实现联网、开放与共享,鼓励真实数据生产的体制、机制真正得以建立,大数据在金融领域的广泛应用才能拥有较适宜的生态环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25