
在大数据时代下,大数据在金融领域的应用也变得日益普遍,但是有一点值得注意,那就是大企业与小微企业的信息结构存在显着不同。大企业经营规范、信息披露较充分且可信度高、信息质量审核相对容易,因此适用于传统的基于财务报表与抵押资产质量的信贷审核方法;而小微企业的经营管理水平差异较大、市场上信息披露较少,且我国很多小微企业缺乏合规的、真实可信的财务报表,因此审核小微企业资质、搜寻小微企业信息需付出的人力、物力成本较高,很多银行都提出了许多创新的办法,例如,看小微企业的“三表”(水表、电表、纳税表)等。
如果不改善信息结构,可覆盖风险的有效途径只剩下提高利率与要求抵押担保。在当前利率非完全市场化与抵押担保品欠缺的情况下,采用传统信贷技术从事小微金融,需付出的边际成本与服务大企业相差不大。在信贷供给资源仍显稀缺的情形之下,银行具有提高授信门槛以迫使高风险客户退出信贷市场的动机,这就是“二八定律”和银行针对小微企业客户实施信贷配给背后的原因。银行服务80% 低端客户所带来的利润微乎其微,不如将这部分客户赶出市场,全力支持20% 的高端客户。
大数据正在尝试打破这种成本与收益难以均衡的僵局。大数据与信贷业务结合的核心优势在于重塑信息结构、削减业务成本。电子商务平台与社交化网络的发展积累了海量数据,对网络大数据进行挖掘所得到的逻辑与规律信息,要比现实中发布的企业数据更具真实性。
大数据与金融行业的融合催生出的新产业——互联网金融——完全不同于信用中介模式,甚至从匹配资金供需效率的角度来说已超越了信用中介模式。以阿里金融为例,囊括了平台商户的历史交易数据、信用记录、客户评价等内部数据,以及纳税记录、海关记录等外部数据的“大数据”,颠覆了银企间信息不对称的格局。信息结构的改善,令金融机构可以清晰地甄别出企业的资质,信息不对称得以解决。激励金融机构为优质的小微客户提供信贷服务,“信贷配给”发生的基础不复存在。同时,运算能力强大的电子系统将客户拓展的边际成本削减至几乎为零,“二八定律”成立的前提也随之消失,在大数据时代,金融机构有机会从80% 的低端客户身上获取不菲的价值。
改变风险管理上的激励不相容
在中国传统金融机构中,现阶段还存在开展小微金融业务在风险管理上的激励不相容问题。在银行业不断改革发展的过程中,商业银行普遍强化了信用风险约束机制,但与其相匹配的激励机制却没有相应建立,因此客户经理普遍存在“贷不如不贷,多贷不如少贷”的“惜贷心理。不仅如此,由于贷后持续监督的成本过高,客户经理缺乏有效的显性激励来控制风险,导致小微企业贷款的社会总体违约率上升,相应地给予银行小微金融业务违约风险大的不良预期。如果加上担忧信息不对称情况下可能出现的逆向选择与道德风险,银行会选择收紧针对小微企业的信贷供给,造成小微企业信贷市场不均衡。
大数据时代里,信息结构的改变,直接驱动风险控制理念发生根本性变化。原来是要求补偿覆盖风险损失(无论是高利率还是抵押担保要求),现在变为持续考核与监控企业稳健经营、创造现金及还款的能力;原来集中考察“硬信息”(资产负债表等),现在变为重点考察“软信息”(经营和交易数据、单据等)。从依赖人力转变到依赖电子系统,风险管理的激励不相容问题不再成为制约小微金融发展的桎梏。信贷理念的变化契合了解决小微企业融资难题的思路。
不仅如此,基于大数据挖掘的系统处理与实时监控显着缩短了业务流程,提升了信贷业务效率,具有符合小微企业贷款需求“短、频、快”特点的灵活性。例如,阿里金融推出的“按日计息、随借随还”的信贷产品,依托信息技术的强大保障,既解决了客户的短期资金需求,又有效提高了资金的周转速度,通过金融创新为企业增加了价值。
开放与真实的数据
中国潜在的大数据资源非常丰富,从电信、金融、社保、房地产、医疗、征信体系等部门到电子商务平台、社交网站等,覆盖广泛。然而,现阶段所披露的数据仅仅是局部的、碎片化的,尤其是对评估小微企业信用至关重要的社会征信体系,仍旧是区域割裂、透明度较低。因此,获取信息的高成本无疑阻碍了小微金融的发展。
以典型的P2P 模式为例,借助后发优势,我国P2P 借贷平台的交易流程与机制完全与国际先进水平接轨,但在信用评估时经常面临公开信息不足的窘境。在健全、完善、公开的征信系统以及成熟的信用评级市场的保障下,美国P2P 平台能够将信用评估模块完全外包。信息生态是决定P2P 机构在未来能有多大施展的关键制约因素。
数据的可得性是大数据得以应用的前提,而数据的真实性同样具有关键意义。在中国现行税制背景下,小微企业为了规避税费或争取优惠政策而形成的财务报表,无法真实反映企业的经营状况。不仅如此,投机性的财务造假在信贷市场上起到了“劣币驱除良币”的效应,将财务状况良好、诚信经营的企业逐渐挤出市场。这种无效数据的大量生产与无序流动,严重扰乱了大数据时代的正常秩序,也对数据挖掘产生了恶劣影响。
大数据时代下,“数据+ 金融”模式已经悄然兴起,尤其是在金融领域,逐渐流行开来,同已有的解决小微企业融资问题的诸多途径在本质上是类似的,都是为了创造一个低成本的、信息完全对称的市场结构。只有社会公共数据信息真正实现联网、开放与共享,鼓励真实数据生产的体制、机制真正得以建立,大数据在金融领域的广泛应用才能拥有较适宜的生态环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08