
从这三大趋势来看,人工智能将重新定义云计算
随着大数据的指数级增长,以及人工智能的突破性进展,“云计算+大数据+人工智能“成为未来发展关键,互联网的下一幕将由人工智能开始主导,而各行各业也将依托于“智能+”完成对于自身的改造,百度云也为此进行了全面升级。
事实上在人工智能的驱动下,未来的云计算正在驶入全新的智能领域领域,其主要表现出三大趋势。
一,大数据激增,运算能力成云计算新焦点
传统时代并不存在云计算的说法,因为早期需要解决的问题是存储问题,成千上万的企业网站需要联网,而这些企业也仅仅只需要托管服务即可。
但是移动时代却是一个关键性的转折点,随着移动时代的到来,用户在企业产品中留下的数据开始激增,相比于pc时代可以用天文数字来形容,并且电商、物流、医疗、教育、营销、金融等诸多行业被全面波及,这些企业也越来越需要通过用户的数据,来对自己进行产品的调整以及改进规划,对于运算能力有着极大的需求。
之前的云计算解决了存储问题,但是并没有解决企业如何处理大数据的问题。因此,如何高效处理大数据则是未来的全新焦点,当存储能力不再重要时,运算能力正在成为未来企业全新的追逐对象。
此次百度云发布的“天算“正是应对这一需求,百度自身就是依靠运算能力起家,搜索从一开始就需要对大量的数据进行运算,其日均响应搜索超过60亿次,覆盖全国97.5%网民,LBS日请求超过300亿次,日语音识别请求超过1亿次,这些数据让百度的运算能力得到了强大的训练,不断倒逼自身能力。
此次“天算”开放则是将这16年的积累与全社会进行分享,使得每个行业都能够最高效解决大数据利用问题。
二,用户交互方式开始多元,企业难以应对
早期的pc时代,受制于操作设备的不方便,用户与机器的交互方式只是通过文字进行,但是移动时代的智能手机带来了巨大的便携性,用户的请求方式开始多远,图片请求、语音请求、视频请求等等诸多形式。
企业只有抓住这些全新的交互形式,才等于抓住了未来,因此需要人工智能技术来应对用户场景的变化,帮助自己的用户更方便高效的使用自身产品,无论用户的语音请求还是图片请求都能够正确响应,但实际上该领域入门门槛极高,绝大多数公司都不可能单独设立部门进行研发,因此提供的人工智能服务的第三方成为关键。
面对以上全新的用户交互场景,百度云发布了“天像“,天象功能可以为开发者提供视频、图片、文档等多媒体处理、存储、分发的云服务,同时还额外提供“反黄服务“、“视觉特效“、“人脸识别“、“文字识别“等等服务,此外百度生态还对“天像“进行巨大的流量扶持让企业获得巨大的流量曝光。
对应变化的用户场景,一直都是百度长期以来布局的焦点,以语音识别和图片识别为例,百度在语音识别方面其准确率高达97%,而其Deep Speech2深度语音学习也被《麻省理工评论》评为十大突破性技术,与航天技术、生物技术并列,也是唯一一家入选的中国公司。在图片识别方面,百度的Deep Image可以对图片内容进行识别,LWF人脸识别精度达到99.86%,文字OCR的准确率也在90%。
目前百度也已经全面开放了语音、图片的技术,开发者除了可以接入“天像”之外,还可以直接利用百度的语音识别、图像识别开放平台轻而易举的完成自身无法完成的高门槛技术实现。
三,物联网崛起,云计算向人工智能全面进化
继德国工业4.0之后,我国也在2014年提出了中国制造2025计划,智能工程也被正式抬上议题,在2025年重点制造业将全面实现智能化,实现统一的智能管理。
物联网的云计算与其他云计算不同,其重点不在于存储和托管,其需要一个标准化的管理规则,让设备能够统一的接入,统一的调度,统一的检测等等,而这一切又都依托于人工智能技术,也就是说在物联网的云计算方面,传统的云计算已经无法继续胜任,其不仅需要与人工智能结合,更需要将自身进化成人工智能。
百度云此次发布的“天工”,则正是应对未来的物联网时代的全面布局,而百度自身在物联网方面也有相当大的动作,无人车可以说是整个物联网的集大成者,涉及多方面的顶级软硬件技术,而百度则是将无人车列为自己的重点。
百度一开始就以无人车最高级的全自动驾驶作为标准,采用全球最先进的传感器等设备,并配合自身前沿的语音技术、图像识别技术、地图技术、深度学习技术来实现无人车的运作,并且在政府方面也获得了极大的支持,分别获得了中国芜湖地以及美国加州的试点允许,不仅是亚洲第一家做无人车的公司,也是唯一一家获得两国政府认可的公司。
无人车是顶级前沿人工智能技术的综合集成,而“天工”则是将这些前人工智能沿技术进行开放,让更多的物联网开发者能够获得低成本高效率的解决方案,目前“天工”已经有了登云、互道信息、普奥云、智向科技、物联天下等物联网公司的合作案例,而在此后也将吸引越来越多顶级的开发者。
结语:
未来是数据的时代、用户多种请求的时代、物联网设备的时代,传统的托管云计算将无法胜任,而云计算也将全面向人工智能进化,未来没有云计算只有人工智能,而这种趋势已经开始。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04