
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
https://edu.cda.cn/goods/show/3845?targetId=6754&preview=0
“最近的销售数据,让运营经理头大了!”
小张是某电商平台的运营经理,最近发现一个不妙的趋势——销售额连续三个月下降,最新一个月环比下降了 15%!一开始以为只是短期波动,但翻看了去年的数据后,他意识到事情可能没那么简单。到底是市场大环境变差了,还是自家出了问题?小张决定使用趋势分析来摸清销售额变化的底细。
趋势分析,说白了就是“观察数据的走势,看它是涨是跌,再想办法解释背后的原因。”这就像是医生给病人看体检报告,血压、血糖这些数据是升是降,能反映出健康状况,销售数据也是一样的道理。
简单来说,趋势分析主要做以下几项工作:
第一步
画个趋势图,看看整体走势
小张先把过去一年的销售数据拉出来,绘制销售额趋势图:
从上面的趋势图可以看到:
销售额在 7 月达到高点,然后开始下滑。8月之后数据一直在下滑直到12月。小张确定,这不是短期波动,而是一个持续的下降趋势。
第二步
拆解核心指标,找到下降的真正原因
销售额可以拆解为以下三个核心指标:
销售额=访客数(UV)×转化率×客单价
分别来看这三个指标的变化趋势。
通过访客数(UV)趋势图可知:访客量稳定,问题不在流量
访客数(UV)在 7月之后虽然略有下降,但基本保持稳定,整体保持在6月的访客数附近,但销售额并没有保持在6月的销售额水平上下。这说明销售额下降并不是由于流量减少,更大可能是流量进来后没有转化为订单。
因此,我们需要进一步查看转化率的变化趋势。
转化率趋势:下降明显,
从转换率趋势图可以看出,转化率从7月的22%降低到了12月的13%,下降幅度达到9%。这说明,尽管访客数有所减少,但影响销售额的主要因素是转化率的大幅下降。
那么,是什么导致转化率下降?我们需要进一步分析转化率的细分维度,例如:
流量来源:是否某些渠道的转化率下降?
用户类型:新用户 vs. 老用户,谁的转化率下降更多?
第三步
进一步深挖,找出影响转化率的具体因素
流量来源分析结论:付费流量转化率下降
从图表可以看到:
自然流量转化率基本保持稳定,说明老用户或者主动搜索进来的用户行为没有太大变化。
付费流量转化率下降明显,这说明:付费流量的质量下降,可能是投放渠道的用户精准度变差;付费广告可能吸引了很多低意向用户,导致他们访问但没有购买。
**关键结论:销售额下降的部分原因是广告投放的流量质量变差,带来的用户不精准,导致转化率下降。
新老用户分析结论:新用户转化率下降明显
从图表可以看出:
老用户转化率基本保持稳定,说明老客户的购买习惯没有太大变化。
新用户转化率明显下降,说明:近期获取的新用户质量较低,他们进入网站但没有完成购买;新用户的引导或促销力度可能不足,导致他们流失。
关键结论:销售额下降的另一个重要原因是新用户的转化率下降,说明近期的营销策略可能未能有效吸引高质量用户,或用户进入后缺少足够的购买激励。
第四步
趋势预测,未来会发生什么?
接下来,小张预测了未来两个月的销售额,如果不采取任何措施,是否还会继续下降?
使用时间序列回归模型(ARIMA模型)预测未来两个的销售额数据分别为93.55万元和92.67万元,即如果不调整策略,销售额可能继续下降,意味着如果不采取优化措施,销售额还会继续下滑。
第五步
优化策略,如何改善销售?
根据上述情况,小张提出可以采取的优化措施:
**针对“付费流量质量下降” **
**针对“新用户转化率下降” **
**针对“整体转化率下降” **
综上,趋势分析可以帮助快速识别业务变化,找到问题根源,并做出精准预测。结合趋势图表,可以更直观地发现问题,而不是凭感觉猜测。通过合理的优化策略,可以改善销售趋势,避免损失继续扩大。
以上的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29