京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数说跨屏时代的大数据营销
移动互联网的迅速崛起,使得一边看电视,一边玩手机、平板成为人们生活的新常态。在多屏的包围中,人们的时间行为和注意力被分散到了不同的屏幕上,有调查显示,超过78%的人看电视的同时会刷微博、玩微信。在这样一个被碎片化的时代中,广告主如果想要更好地抓住消费者的兴趣点,必须考虑跨屏整合的数字营销方式。
2014年11月26日,作为国内多屏程序化购买的引领者,悠易互通在上海四季酒店举办了“悠易DSP DAY”主题活动,围绕跨屏互动的程序化购买、大数据营销的新体验和未来机遇,悠易互通CEO周文彪、Google大中华区程序化购买买方事务总经理郭志明、海尔家电产业集团营销总经理宋照伟、百度展示广告事业部产品总监沈昭阳等业界精英展开了激烈的思维碰撞,并同参会者一起分享了有关大数据、跨屏、视频、PMP、移动等内容的干货。
记者了解到,悠易互通于2012年时首次将源于美国的“程序化购买”概念引入国内,推出当时国内第一个支持实时竞价的需求方平台(DSP)。1年后,悠易互通在DPS1.0的基础上再次革新,推出了划时代的DSP2.0,于国内多屏程序化购买的比赛中再次领跑。
悠易互通推出的DSP2.0系统不仅以单用户界面,整合了实时竞价和非实时竞价(non-RTB)模式资源、展示广告和搜索广告,并对接国内所有广告交易平台与供应方平台(SSP),能够为广告主提供平均每天120亿的跨屏(PC、平板、与手机端)、丰富格式(视频、视窗、富媒体、画中画、横幅等)的优质广告流量。
同时,这套系统通过动态预算分配,将大数据的优势发挥到极致,解决了传统广告投放效率低、不透明的问题,帮助广告主和代理公司进行品牌投放时能够像搜索引擎一样高效、规模化且可以评估。截至目前,悠易互通已为包括联合利华、联想、惠普、壳牌、奥迪等300多家国际与国内客户提供了卓越的品牌效果解决方案。
“悠易的核心团队来自Google、淘宝、百度、腾讯等一流互联网企业。不论是研发团队还是管理团队,都既有国际化视野同时具备高效的执行力。”悠易DSP DAY主题活动中,悠易互通CEO周文彪表示,“技术与数据是悠易始终专注的两个层面。在技术层面上,我们拥有一个整合平台与诸多专利技术产品,在数据层面上,我们于今年1月推出国内首个数据管理平台‘数据银行’,6个月一年后的今天,数据银行正式升级为2.0版本。”
悠易互通CEO周文彪
周文彪向记者介绍,悠易互通的拳头产品分为两部分,分别是多屏程序化购买平台与数据银行。此次发布的数据银行2.0主要体现在PC端与移动端的跨屏数据的高效整合。
“数据银行1.0解决了广告主收集、分析、管理第一方数据的难题,并与庞大的第三方数据打通,在产品中形成数据应用闭环,不过这些数据的应用更多局限在PC端上。”周文彪告诉记者,跨屏的出现给品牌营销出了一道难题,如何在多屏环境下找到你的目标人群,并且对他们进行有效覆盖,同时对这些人群建立深度和广度的用户交互?
“我们差不多用了3个月的时间来思考酝酿,用6个月的时间经验来积累总结。”悠易互通产品副总裁蒋楠说:“数据2.0为跨屏而生,它有效针对当下的跨屏潮流,有效地将PC端的庞大数据迁移到移动端上,形成跨屏ID。为广告主在移动端,通过刚才讲到的从到达到浏览,到转化的所有数据,形成一个效果评估的衡量工具提供归因模型和跨屏归因。”
在大数据时代,得数据者得天下,数据是指引程序化购买的指南针。在周文彪眼中,跨屏整合不仅仅是一项技术,而是一个大平台。“对我个人而言,这是自2002年搜索引擎以后,对互联网广告产生最深刻影响的一项技术。目前BAT等一些巨头都已经进来,诸多国际化大品牌客户也都在使用。未来,数据银行的3.0版本将实现跨屏的衡量和归因,使悠易能够还原每位广告主花的每一分钱到底值还是不值。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17