京公网安备 11010802034615号
经营许可证编号:京B2-20210330
树形结构数据是一种常见的数据结构,它由节点和边组成,可以用来表示层次化的关系。在MySQL表中存储树形结构数据,可以使用多种方法,本文将简要介绍几种主要的方法。
我们可以使用以下表格来存储此树形结构:
dept_id | name | parent_id
--------|----------------------|----------
1 | 公司 | NULL
2 | 技术部 | 1
3 | 开发团队 | 2
4 | 测试团队 | 2
5 | 销售部 | 1
6 | 区域销售团队 | 5
7 | 在线销售团队 | 5
其中,dept_id 是节点的唯一标识符,name 是节点名称,parent_id 是父节点的 dept_id。如果一个节点没有父节点,则其 parent_id 值为 NULL。
优点:邻接列表模型是非常简单和直观的模型,易于理解和实现。 缺点:查询复杂度高,特别是递归查询。
dept_id | name | path
--------|----------------------|---------
1 | 公司 | 1
2 | 技术部 | 1/2
3 | 开发团队 | 1/2/3
4 | 测试团队 | 1/2/4
5 | 销售部 | 1/5
6 | 区域销售团队 | 1/5/6
7 | 在线销售团队 | 1/5/7
在此模型中,每个节点都有一个唯一标识符dept_id,名称name和path,该路径包含其所有祖先节点的dept_id,以斜杠分隔。例如,技术部门的路径为1/2,其祖先为公司(dept_id为1)。
优点:查询效率高,对于子节点查询,只需要使用LIKE操作符即可。 缺点:更新节点时,需要更新其后代节点的路径。
dept_id | name | lft | rgt
--------|----------------------|-----|-----
1 | 公司 | 1 | 14
2 | 技术部 | 2 | 7
3 | 开发团队 | 3 | 4
4 | 测试团队 | 5 | 6
5 | 销售部 | 8 | 13
6 | 区域销售团队 | 9 | 10
7 | 在线销售团队 | 11 | 12
在此模型中,
每个节点都有一个唯一标识符dept_id,名称name,以及左右值lft和rgt。左右值的定义是这样的:假设一个节点有子节点,则其左值是其第一个子节点的左值减1,右值是其最后一个子节点的右值加1。如果一个节点没有子节点,则其左值和右值相等。
优点:查询效率高,递归查询时不需要使用JOIN操作,只需要使用BETWEEN操作即可。 缺点:更新节点时,需要更新许多左右值。
dept_id | name | lft | rgt | depth
--------|---------------------|-----|-----|-------
1 | 公司 | 1 | 14 | 0
2 | 技术部 | 2 | 7 | 1
3 | 开发团队 | 3 | 4 | 2
4 | 测试团队 | 5 | 6 | 2
5 | 销售部 | 8 | 13 | 1
6 | 区域销售团队 | 9 | 10 | 2
7 | 在线销售团队 | 11 | 12 | 2
在此模型中,每个节点都有一个唯一标识符dept_id,名称name,以及左右值lft、右值rgt和深度depth。与嵌套集合模型相比,MPTT模型额外提供了深度值,便于快速计算节点的层次关系。
优点:查询效率高,递归查询时不需要使用JOIN操作,只需要使用BETWEEN操作即可。 缺点:更新节点时,需要更新许多左右值。
总结 以上是几种常见的存储树形结构数据的方法。每种方法都有其优点和缺点,具体应用需根据具体场景而定。对于较深的树形结构,MPTT和嵌套集合模型可能比邻接列表和路径枚举模型更适合。但是,在更新节点时,MPTT和嵌套集合模型需要更新大量的值,因此在频繁更新节点的情况下,邻接列表和路径枚举模型可能更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28