京公网安备 11010802034615号
经营许可证编号:京B2-20210330
树形结构数据是一种常见的数据结构,它由节点和边组成,可以用来表示层次化的关系。在MySQL表中存储树形结构数据,可以使用多种方法,本文将简要介绍几种主要的方法。
我们可以使用以下表格来存储此树形结构:
dept_id | name | parent_id
--------|----------------------|----------
1 | 公司 | NULL
2 | 技术部 | 1
3 | 开发团队 | 2
4 | 测试团队 | 2
5 | 销售部 | 1
6 | 区域销售团队 | 5
7 | 在线销售团队 | 5
其中,dept_id 是节点的唯一标识符,name 是节点名称,parent_id 是父节点的 dept_id。如果一个节点没有父节点,则其 parent_id 值为 NULL。
优点:邻接列表模型是非常简单和直观的模型,易于理解和实现。 缺点:查询复杂度高,特别是递归查询。
dept_id | name | path
--------|----------------------|---------
1 | 公司 | 1
2 | 技术部 | 1/2
3 | 开发团队 | 1/2/3
4 | 测试团队 | 1/2/4
5 | 销售部 | 1/5
6 | 区域销售团队 | 1/5/6
7 | 在线销售团队 | 1/5/7
在此模型中,每个节点都有一个唯一标识符dept_id,名称name和path,该路径包含其所有祖先节点的dept_id,以斜杠分隔。例如,技术部门的路径为1/2,其祖先为公司(dept_id为1)。
优点:查询效率高,对于子节点查询,只需要使用LIKE操作符即可。 缺点:更新节点时,需要更新其后代节点的路径。
dept_id | name | lft | rgt
--------|----------------------|-----|-----
1 | 公司 | 1 | 14
2 | 技术部 | 2 | 7
3 | 开发团队 | 3 | 4
4 | 测试团队 | 5 | 6
5 | 销售部 | 8 | 13
6 | 区域销售团队 | 9 | 10
7 | 在线销售团队 | 11 | 12
在此模型中,
每个节点都有一个唯一标识符dept_id,名称name,以及左右值lft和rgt。左右值的定义是这样的:假设一个节点有子节点,则其左值是其第一个子节点的左值减1,右值是其最后一个子节点的右值加1。如果一个节点没有子节点,则其左值和右值相等。
优点:查询效率高,递归查询时不需要使用JOIN操作,只需要使用BETWEEN操作即可。 缺点:更新节点时,需要更新许多左右值。
dept_id | name | lft | rgt | depth
--------|---------------------|-----|-----|-------
1 | 公司 | 1 | 14 | 0
2 | 技术部 | 2 | 7 | 1
3 | 开发团队 | 3 | 4 | 2
4 | 测试团队 | 5 | 6 | 2
5 | 销售部 | 8 | 13 | 1
6 | 区域销售团队 | 9 | 10 | 2
7 | 在线销售团队 | 11 | 12 | 2
在此模型中,每个节点都有一个唯一标识符dept_id,名称name,以及左右值lft、右值rgt和深度depth。与嵌套集合模型相比,MPTT模型额外提供了深度值,便于快速计算节点的层次关系。
优点:查询效率高,递归查询时不需要使用JOIN操作,只需要使用BETWEEN操作即可。 缺点:更新节点时,需要更新许多左右值。
总结 以上是几种常见的存储树形结构数据的方法。每种方法都有其优点和缺点,具体应用需根据具体场景而定。对于较深的树形结构,MPTT和嵌套集合模型可能比邻接列表和路径枚举模型更适合。但是,在更新节点时,MPTT和嵌套集合模型需要更新大量的值,因此在频繁更新节点的情况下,邻接列表和路径枚举模型可能更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23