京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在这篇文章中,我将给出三种方法,在这些方法中,您可以自己获得实际的数据科学经验。通过完成这些项目,您将对SQL、Pandas和Machine learning Modeling有更好的理解。
话虽如此,让我们潜入其中吧!
如果你想成为一名数据科学家,你就得有很强的SQL技能。Mode提供了三个模拟实际业务问题的实际SQL案例研究,以及一个在线SQL编辑器,您可以在其中编写和运行查询。
要打开模式的SQL编辑器,请转到此链接并单击超链接,其中显示“打开另一个窗口到模式”。
学习SQL
如果您是SQL新手,我将首先从Mode的SQL教程开始,在那里您可以学习基本、中级和高级SQL技术。如果您已经对SQL有了很好的了解,可以跳过这个。
案例研究1:调查用户参与度下降
这个案例的目的是确定Yammer项目用户参与度下降的原因。在深入研究数据之前,您应该在这里阅读Yammer的概述。您应该使用4个表。
到案例的链接将为您提供更多关于问题、数据和应该回答的问题的详细信息。
如果你想要指导,请看看我是如何处理这个案例研究的。
案例研究2:理解搜索功能
本案例更侧重于产品分析。在这里,您需要深入到数据中,并确定用户体验是好是坏。这个案例的有趣之处在于,决定“好”和“坏”的含义以及如何评估用户体验取决于您。
案例研究3:验证A/B测试结果
最实用的数据科学应用程序之一是执行A/B测试。在这个案例研究中,您将深入研究a/B测试的结果,其中对照组和治疗组之间有50%的差异。在这种情况下,您的任务是在彻底分析后验证或使结果无效。
当我第一次开始开发机器学习模型时,我发现我缺乏熊猫技能是我所能做的一个很大的限制。不幸的是,与Python和SQL不同,互联网上没有太多的资源允许您练习Pandas的技能。
然而,几周前,我访问了这个资源-这是一个专门针对熊猫的充满实践问题的存储库。通过完成这些练习问题,您将知道如何:
如果你能完成这些练习问题,你应该能够自信地说你知道如何使用Pandas进行数据科学项目。它还将为您的下一节提供显著帮助。
获得数据科学经验的最好方法之一是创建自己的机器学习模型。这意味着找到一个公共数据集,定义一个问题,并用机器学习解决这个问题。
Kaggles是世界上最大的数据科学社区之一,有数百个数据集可供选择。下面是一些你可以用来开始的想法。
预测葡萄酒质量
此数据集包含关于各种葡萄酒、它们的组成和葡萄酒质量的数据。这可能是一个回归或分类问题,这取决于您如何构建它。看看你是否能预测一个红葡萄酒的质量给11个输入(固定酸度,挥发性酸度,柠檬酸,残糖,氯化物,游离二氧化硫,总二氧化硫,密度,pH,硫酸盐和酒精。
如果您想要为该数据集创建机器学习模型的指导,请查看我的方法此处.
二手车价格估算器
Craigslist是世界上最大的二手车销售收藏库。此数据集由Craigslist中的刮擦数据组成,每隔几个月更新一次。使用此数据集,看看是否可以创建一个数据集来预测汽车上市是否已经结束或价格过低。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22