京公网安备 11010802034615号
经营许可证编号:京B2-20210330
近年来,我国各地数字政府建设进程不断加快,并且已经进入全面提升阶段。
来源 | 数据观
作者 | 石煜倩
编辑 | 杨盼
日前公布的国家“十四五”规划纲要提出,要提高数字政府建设水平,将数字技术广泛应用于政府管理服务,推动政府治理流程再造和模式优化,不断提高决策科学性和服务效率。
近年来,我国各地数字政府建设进程不断加快,并且已经进入全面提升阶段。相关数据显示,截至2020年11月底,我国有23个省级(占比71.9%)和31个重点城市(占比96.9%)地方政府明确了政务数据统筹管理机构,推进本地数字政府建设,16个省级(占比50.0%)和10个重点城市(占比31.3%)政府已出台并公开数字政府建设相关规划计划、方案意见。
数字政府重要的特质是“平台政府”,通过政务平台和一体化网络体系把政府与民众紧密联系在一起,民众通过政务平台享受政府提供的各类服务,并对政府机构及其工作人员直接进行评价和监督。上海卓繁信息技术股份有限公司(以下简称:卓繁信息)是全国首套政务服务软件提供商,也是国内数字政务一站式解决方案的领军企业,专注政务服务20年间,始终扎根电子政务信息领域,在高速发展的同时还基于自身的技术和经验帮助多地政务服务主管部门解决了其在“综合窗口、全科受理”改革中的痛点、难点。
智能政务服务工作台C款
“经过多年的发展,各地政府部门虽然在数字化转型方面取得了一定的进展和成效,但从网络化、数据化两个维度来看,政府部门数字化转型多集中在数字基础设施建设和工具引入层面,未能构建起与之配套的制度、管理和应用体系,难以有效支撑治理范式的数字化转型。”卓繁信息人工智能事业部总经理张冲在采访中分析道:在网络化方面,由于政府部门建设服务平台时缺乏整体性规划、平台建设和管理缺乏统一性、平台相互割裂、线上线下服务割裂,以及服务碎片化,严重影响公众使用体验,制约着数据化和智能化转型的推进;在数据化方面,数据管理体系和配套制度建设落后于现实需要,难以有效支撑数据治理和数据化转型,虽然政府部门逐渐意识到数据化的社会价值,但是传统的数据管理体制无法满足大数据的管理要求。
在对市场有了深刻的理解和分析后,卓繁信息也紧随时代发展,将大数据、人工智能、区块链等新一代信息技术应用于数字政府的项目实践中,为政府部门持续提供优质且高效的服务,做好“数字化助手”的支撑工作。例如,卓繁信息预计在本届数博会上展示的一体化政务服务平台整合政府部门政务服务资源,建设一体化在线政务服务应用,实现各级政府及其部门权责事项集中进驻、网上服务集中提供、数据资源集中共享,为公众和法人提供全方位、主动式、精准化、个性化、一站式的灵活高效便捷的融合服务。融合电脑端、移动端、自助终端等多渠道,建设涵盖查询查看、咨询问答、线上办事、监督评价、用户空间等功能于一体的线上服务的入口,打造“一网通办,多端互联”的新型政务服务模式。
作为数博会的“老朋友”,卓繁信息已经连续三年参加数博会,每次亮相都会在政务服务方面予以参会嘉宾新的启发。据了解,卓繁信息将携多款硬核产品及解决方案参展2021数博会,拟参展产品包括智能政务服务工作台、超级自助终端、智能咨询机器人、无感智能评价终端等多款硬件设备及跨省通办平台、一业一证系统等软件产品。届时,卓繁信息将重点展示在数字化进程中,如何助力政府发挥数据新动能,为群众提供包括政务服务及公众服务在内的多种便利服务。
当谈及数字政府建设未来的发展趋势时,张冲表示,面向未来,数字政府建设将以用户需求为导向,实现线上线下融合,提升公共服务普惠均等,最终实现共建共治。张冲从四个方面提出了具体建议:第一,数字政府建设应从需求侧场景应用出发,以使用者感受为导向,优化服务流程,推进服务“有求必应、无事不扰”,服务绩效由群众和企业评判;第二,数字政府建设应实现线上线下渠道互补、标准一致、线下兜底,线上体现速度、线下体现温度;第三,数字政府建设应拓展和优化公共服务、便民服务,不断提升公共服务普惠化、均等化水平,让人民群众的体验感更佳、获得感更足;第四,数字政府建设要厘清政府与市场边界,加强政企合作、多方参与,强化政策和监管的统筹协调,推进“云、数、网、端”整合、共享、开放,提升服务智能化水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29